1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
/*
* Copyright 2015 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// WebAssembly intepreter for asm2wasm output, in a js environment.
//
// Receives asm.js, generates a runnable module that executes the code in a WebAssembly
// interpreter. This is suitable as a polyfill for WebAssembly support in browsers.
//
#include <emscripten.h>
#include "asm2wasm.h"
#include "wasm-interpreter.h"
#include "wasm-s-parser.h"
#include "wasm-binary.h"
#include "wasm-printing.h"
using namespace cashew;
using namespace wasm;
namespace wasm {
int debug = 0;
}
// global singletons
Asm2WasmBuilder* asm2wasm = nullptr;
SExpressionParser* sExpressionParser = nullptr;
SExpressionWasmBuilder* sExpressionWasmBuilder = nullptr;
ModuleInstance* instance = nullptr;
Module* module = nullptr;
bool wasmJSDebug = false;
static void prepare2wasm() {
assert(asm2wasm == nullptr && sExpressionParser == nullptr && sExpressionWasmBuilder == nullptr && instance == nullptr); // singletons
#if WASM_JS_DEBUG
wasmJSDebug = 1;
#else
wasmJSDebug = EM_ASM_INT_V({ return !!Module['outside']['WASM_JS_DEBUG'] }); // Set WASM_JS_DEBUG on the outside Module to get debugging
#endif
}
// receives asm.js code, parses into wasm.
// note: this modifies the input.
extern "C" void EMSCRIPTEN_KEEPALIVE load_asm2wasm(char *input) {
prepare2wasm();
Asm2WasmPreProcessor pre;
input = pre.process(input);
// proceed to parse and wasmify
if (wasmJSDebug) std::cerr << "asm parsing...\n";
cashew::Parser<Ref, DotZeroValueBuilder> builder;
Ref asmjs = builder.parseToplevel(input);
module = new Module();
uint32_t providedMemory = EM_ASM_INT_V({
return Module['providedTotalMemory']; // we receive the size of memory from emscripten
});
if (providedMemory & ~Memory::kPageMask) {
std::cerr << "Error: provided memory is not a multiple of the 64k wasm page size\n";
exit(EXIT_FAILURE);
}
module->memory.initial = providedMemory / Memory::kPageSize;
module->memory.max = pre.memoryGrowth ? -1 : module->memory.initial;
if (wasmJSDebug) std::cerr << "wasming...\n";
asm2wasm = new Asm2WasmBuilder(*module, pre.memoryGrowth, debug, false /* TODO: support imprecise? */);
asm2wasm->processAsm(asmjs);
if (wasmJSDebug) std::cerr << "optimizing...\n";
asm2wasm->optimize();
if (wasmJSDebug) std::cerr << "mapping globals...\n";
for (auto& pair : asm2wasm->mappedGlobals) {
auto name = pair.first;
auto& global = pair.second;
if (!global.import) continue; // non-imports are initialized to zero in the typed array anyhow, so nothing to do here
double value = EM_ASM_DOUBLE({ return Module['lookupImport'](Pointer_stringify($0), Pointer_stringify($1)) }, global.module.str, global.base.str);
unsigned address = global.address;
switch (global.type) {
case i32: EM_ASM_({ Module['info'].parent['HEAP32'][$0 >> 2] = $1 }, address, value); break;
case f32: EM_ASM_({ Module['info'].parent['HEAPF32'][$0 >> 2] = $1 }, address, value); break;
case f64: EM_ASM_({ Module['info'].parent['HEAPF64'][$0 >> 3] = $1 }, address, value); break;
default: abort();
}
}
}
void finalizeModule() {
uint32_t providedMemory = EM_ASM_INT_V({
return Module['providedTotalMemory']; // we receive the size of memory from emscripten
});
if (providedMemory & ~Memory::kPageMask) {
std::cerr << "Error: provided memory is not a multiple of the 64k wasm page size\n";
exit(EXIT_FAILURE);
}
module->memory.initial = providedMemory / Memory::kPageSize;
module->memory.max = module->checkExport(GROW_WASM_MEMORY) ? -1 : module->memory.initial;
// global mapping is done in js in post.js
}
// loads wasm code in s-expression format
extern "C" void EMSCRIPTEN_KEEPALIVE load_s_expr2wasm(char *input) {
prepare2wasm();
if (wasmJSDebug) std::cerr << "wasm-s-expression parsing...\n";
sExpressionParser = new SExpressionParser(input);
Element& root = *sExpressionParser->root;
if (wasmJSDebug) std::cout << root << '\n';
if (wasmJSDebug) std::cerr << "wasming...\n";
module = new Module();
// A .wast may have multiple modules, with some asserts after them, but we just read the first here.
sExpressionWasmBuilder = new SExpressionWasmBuilder(*module, *root[0], [&]() {
std::cerr << "error in parsing s-expressions to wasm\n";
abort();
});
finalizeModule();
}
// loads wasm code in binary format
extern "C" void EMSCRIPTEN_KEEPALIVE load_binary2wasm(char *raw, int32_t size) {
prepare2wasm();
if (wasmJSDebug) std::cerr << "wasm-binary parsing...\n";
module = new Module();
std::vector<char> input;
input.resize(size);
for (int32_t i = 0; i < size; i++) {
input[i] = raw[i];
}
WasmBinaryBuilder parser(*module, input, debug);
parser.read();
finalizeModule();
}
// instantiates the loaded wasm (which might be from asm2wasm, or
// s-expressions, or something else) with a JS external interface.
extern "C" void EMSCRIPTEN_KEEPALIVE instantiate() {
if (wasmJSDebug) std::cerr << "instantiating module: \n" << module << '\n';
if (wasmJSDebug) std::cerr << "generating exports...\n";
EM_ASM({
Module['asmExports'] = {};
});
for (auto* curr : module->exports) {
EM_ASM_({
var name = Pointer_stringify($0);
Module['asmExports'][name] = function() {
Module['tempArguments'] = Array.prototype.slice.call(arguments);
Module['_call_from_js']($0);
return Module['tempReturn'];
};
}, curr->name.str);
}
// verify imports are provided
for (auto* import : module->imports) {
EM_ASM_({
var mod = Pointer_stringify($0);
var base = Pointer_stringify($1);
var name = Pointer_stringify($2);
assert(Module['lookupImport'](mod, base), 'checking import ' + name + ' = ' + mod + '.' + base);
}, import->module.str, import->base.str, import->name.str);
}
if (wasmJSDebug) std::cerr << "creating instance...\n";
struct JSExternalInterface : ModuleInstance::ExternalInterface {
void init(Module& wasm) override {
// create a new buffer here, just like native wasm support would.
EM_ASM_({
Module['outside']['newBuffer'] = new ArrayBuffer($0);
}, wasm.memory.initial * Memory::kPageSize);
for (auto segment : wasm.memory.segments) {
EM_ASM_({
var source = Module['HEAP8'].subarray($1, $1 + $2);
var target = new Int8Array(Module['outside']['newBuffer']);
target.set(source, $0);
}, segment.offset, segment.data, segment.size);
}
}
Literal callImport(Import *import, ModuleInstance::LiteralList& arguments) override {
if (wasmJSDebug) std::cout << "calling import " << import->name.str << '\n';
EM_ASM({
Module['tempArguments'] = [];
});
for (auto& argument : arguments) {
if (argument.type == i32) {
EM_ASM_({ Module['tempArguments'].push($0) }, argument.geti32());
} else if (argument.type == f32) {
EM_ASM_({ Module['tempArguments'].push($0) }, argument.getf32());
} else if (argument.type == f64) {
EM_ASM_({ Module['tempArguments'].push($0) }, argument.getf64());
} else {
abort();
}
}
double ret = EM_ASM_DOUBLE({
var mod = Pointer_stringify($0);
var base = Pointer_stringify($1);
var tempArguments = Module['tempArguments'];
Module['tempArguments'] = null;
var lookup = Module['lookupImport'](mod, base);
return lookup.apply(null, tempArguments);
}, import->module.str, import->base.str);
if (wasmJSDebug) std::cout << "calling import returning " << ret << '\n';
switch (import->type->result) {
case none: return Literal(0);
case i32: return Literal((int32_t)ret);
case f32: return Literal((float)ret);
case f64: return Literal((double)ret);
default: abort();
}
}
Literal load(Load* load, size_t addr) override {
if (load->align < load->bytes || (addr & (load->bytes-1))) {
double ret = EM_ASM_DOUBLE({
var addr = $0;
var bytes = $1;
var isFloat = $2;
var isSigned = $3;
var save0 = HEAP32[0];
var save1 = HEAP32[1];
for (var i = 0; i < bytes; i++) {
HEAPU8[i] = Module["info"].parent["HEAPU8"][addr + i];
}
var ret;
if (!isFloat) {
if (bytes === 1) ret = isSigned ? HEAP8[0] : HEAPU8[0];
else if (bytes === 2) ret = isSigned ? HEAP16[0] : HEAPU16[0];
else if (bytes === 4 || bytes === 8) ret = isSigned ? HEAP32[0] : HEAPU32[0]; // if i64, return low 32 bits here
else abort();
} else {
if (bytes === 4) ret = HEAPF32[0];
else if (bytes === 8) ret = HEAPF64[0];
else abort();
}
HEAP32[0] = save0; HEAP32[1] = save1;
return ret;
}, addr, load->bytes, isWasmTypeFloat(load->type), load->signed_);
if (!isWasmTypeFloat(load->type)) {
if (load->type == i64) {
if (load->bytes == 8) {
int32_t high = EM_ASM_INT_V({
return HEAPU32[1];
});
return Literal(int64_t(int32_t(ret)) | (int64_t(int32_t(high)) << 32));
} else {
if (load->signed_) {
return Literal(int64_t(int32_t(ret)));
} else {
return Literal(int64_t(uint32_t(ret)));
}
}
}
return Literal((int32_t)ret);
} else if (load->bytes == 4) {
return Literal((float)ret);
} else if (load->bytes == 8) {
return Literal((double)ret);
}
abort();
}
// nicely aligned
if (!isWasmTypeFloat(load->type)) {
int32_t ret;
if (load->bytes == 1) {
if (load->signed_) {
ret = EM_ASM_INT({ return Module['info'].parent['HEAP8'][$0] }, addr);
} else {
ret = EM_ASM_INT({ return Module['info'].parent['HEAPU8'][$0] }, addr);
}
} else if (load->bytes == 2) {
if (load->signed_) {
ret = EM_ASM_INT({ return Module['info'].parent['HEAP16'][$0 >> 1] }, addr);
} else {
ret = EM_ASM_INT({ return Module['info'].parent['HEAPU16'][$0 >> 1] }, addr);
}
} else if (load->bytes == 4) {
if (load->signed_) {
ret = EM_ASM_INT({ return Module['info'].parent['HEAP32'][$0 >> 2] }, addr);
} else {
ret = EM_ASM_INT({ return Module['info'].parent['HEAPU32'][$0 >> 2] }, addr);
}
} else if (load->bytes == 8) {
uint32_t low = EM_ASM_INT({ return Module['info'].parent['HEAP32'][$0 >> 2] }, addr);
uint32_t high = EM_ASM_INT({ return Module['info'].parent['HEAP32'][$0 >> 2] }, addr + 4);
return Literal(int64_t(low) | (int64_t(high) << 32));
} else abort();
return load->type == i32 ? Literal(ret) : Literal(int64_t(ret));
} else {
if (load->bytes == 4) {
return Literal((float)EM_ASM_DOUBLE({ return Module['info'].parent['HEAPF32'][$0 >> 2] }, addr));
} else if (load->bytes == 8) {
return Literal(EM_ASM_DOUBLE({ return Module['info'].parent['HEAPF64'][$0 >> 3] }, addr));
}
abort();
}
}
void store(Store* store_, size_t addr, Literal value) override {
// support int64 stores
if (value.type == WasmType::i64) {
Store fake = *store_;
fake.bytes = 4;
fake.type = i32;
uint64_t v = value.geti64();
store(&fake, addr, Literal(uint32_t(v)));
v >>= 32;
store(&fake, addr + 4, Literal(uint32_t(v)));
return;
}
// normal non-int64 value
if (store_->align < store_->bytes || (addr & (store_->bytes-1))) {
EM_ASM_DOUBLE({
var addr = $0;
var bytes = $1;
var isFloat = $2;
var value = $3;
var save0 = HEAP32[0];
var save1 = HEAP32[1];
if (!isFloat) {
if (bytes === 1) HEAPU8[0] = value;
else if (bytes === 2) HEAPU16[0] = value;
else if (bytes === 4) HEAPU32[0] = value;
else abort();
} else {
if (bytes === 4) HEAPF32[0] = value;
else if (bytes === 8) HEAPF64[0] = value;
else abort();
}
for (var i = 0; i < bytes; i++) {
Module["info"].parent["HEAPU8"][addr + i] = HEAPU8[i];
}
HEAP32[0] = save0; HEAP32[1] = save1;
}, addr, store_->bytes, isWasmTypeFloat(store_->type), isWasmTypeFloat(store_->type) ? value.getFloat() : (double)value.getInteger());
return;
}
// nicely aligned
if (!isWasmTypeFloat(store_->type)) {
if (store_->bytes == 1) {
EM_ASM_INT({ Module['info'].parent['HEAP8'][$0] = $1 }, addr, value.geti32());
} else if (store_->bytes == 2) {
EM_ASM_INT({ Module['info'].parent['HEAP16'][$0 >> 1] = $1 }, addr, value.geti32());
} else if (store_->bytes == 4) {
EM_ASM_INT({ Module['info'].parent['HEAP32'][$0 >> 2] = $1 }, addr, value.geti32());
} else {
abort();
}
} else {
if (store_->bytes == 4) {
EM_ASM_DOUBLE({ Module['info'].parent['HEAPF32'][$0 >> 2] = $1 }, addr, value.getf32());
} else if (store_->bytes == 8) {
EM_ASM_DOUBLE({ Module['info'].parent['HEAPF64'][$0 >> 3] = $1 }, addr, value.getf64());
} else {
abort();
}
}
}
void growMemory(size_t oldSize, size_t newSize) override {
EM_ASM_({
var size = $0;
var buffer;
try {
buffer = new ArrayBuffer(size);
} catch(e) {
// fail to grow memory. post.js notices this since the buffer is unchanged
return;
}
var oldHEAP8 = Module['outside']['HEAP8'];
var temp = new Int8Array(buffer);
temp.set(oldHEAP8);
Module['outside']['buffer'] = buffer;
}, newSize);
}
void trap(const char* why) override {
EM_ASM_({
abort("wasm trap: " + Pointer_stringify($0));
}, why);
}
};
instance = new ModuleInstance(*module, new JSExternalInterface());
// stack trace hooks
EM_ASM({
Module['outside']['extraStackTrace'] = function() {
return Pointer_stringify(Module['_interpreter_stack_trace']());
};
});
}
extern "C" int EMSCRIPTEN_KEEPALIVE interpreter_stack_trace() {
std::string stack = instance->printFunctionStack();
return (int)strdup(stack.c_str()); // XXX leak
}
// Does a call from js into an export of the module.
extern "C" void EMSCRIPTEN_KEEPALIVE call_from_js(const char *target) {
if (wasmJSDebug) std::cout << "call_from_js " << target << '\n';
IString exportName(target);
IString functionName = instance->wasm.getExport(exportName)->value;
Function *function = instance->wasm.getFunction(functionName);
assert(function);
size_t seen = EM_ASM_INT_V({ return Module['tempArguments'].length });
size_t actual = function->params.size();
ModuleInstance::LiteralList arguments;
for (size_t i = 0; i < actual; i++) {
WasmType type = function->params[i];
// add the parameter, with a zero value if JS did not provide it.
if (type == i32) {
arguments.push_back(Literal(i < seen ? EM_ASM_INT({ return Module['tempArguments'][$0] }, i) : (int32_t)0));
} else if (type == f32) {
arguments.push_back(Literal(i < seen ? (float)EM_ASM_DOUBLE({ return Module['tempArguments'][$0] }, i) : (float)0.0));
} else if (type == f64) {
arguments.push_back(Literal(i < seen ? EM_ASM_DOUBLE({ return Module['tempArguments'][$0] }, i) : (double)0.0));
} else {
abort();
}
}
Literal ret = instance->callExport(exportName, arguments);
if (wasmJSDebug) std::cout << "call_from_js returning " << ret << '\n';
if (ret.type == none) EM_ASM({ Module['tempReturn'] = undefined });
else if (ret.type == i32) EM_ASM_({ Module['tempReturn'] = $0 }, ret.geti32());
else if (ret.type == f32) EM_ASM_({ Module['tempReturn'] = $0 }, ret.getf32());
else if (ret.type == f64) EM_ASM_({ Module['tempReturn'] = $0 }, ret.getf64());
else abort();
}
|