summaryrefslogtreecommitdiff
path: root/src/wasm-stack.h
blob: c64fd27591c9b012f9b0b2ff918d2e9e3eccfe7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
/*
 * Copyright 2018 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef wasm_stack_h
#define wasm_stack_h

#include "wasm.h"
#include "wasm-binary.h"
#include "wasm-traversal.h"
#include "ir/branch-utils.h"
#include "pass.h"

namespace wasm {

// Stack IR: an IR that represents code at the wasm binary format level,
// that is, a stack machine. Binaryen IR is *almost* identical to this,
// but as documented in README.md, there are a few differences, intended
// to make Binaryen IR fast and flexible for maximal optimization. Stack
// IR, on the other hand, is designed to optimize a few final things that
// can only really be done when modeling the stack machine format precisely.

// Currently the benefits of Stack IR are minor, less than 1% reduction in
// code size. For that reason it is just a secondary IR, run optionally
// after the main IR has been optimized. However, if we improve Stack IR
// optimizations to a point where they have a significant impact, it's
// possible that could motivate investigating replacing the main IR with Stack
// IR (so that we have just a single IR).

// A StackIR instance (see wasm.h) contains a linear sequence of
// stack instructions. This representation is very simple: just a single vector of
// all instructions, in order.
//  * nullptr is allowed in the vector, representing something to skip.
//    This is useful as a common thing optimizations do is remove instructions,
//    so this way we can do so without compacting the vector all the time.

// A Stack IR instruction. Most just directly reflect a Binaryen IR node,
// but we need extra ones for certain things.
class StackInst {
public:
  StackInst(MixedArena&) {}

  enum Op {
    Basic,      // an instruction directly corresponding to a non-control-flow
                // Binaryen IR node
    BlockBegin, // the beginning of a block
    BlockEnd,   // the ending of a block
    IfBegin,    // the beginning of a if
    IfElse,     // the else of a if
    IfEnd,      // the ending of a if
    LoopBegin,  // the beginning of a loop
    LoopEnd,    // the ending of a loop
  } op;

  Expression* origin; // the expression this originates from

  Type type; // the type - usually identical to the origin type, but
                 // e.g. wasm has no unreachable blocks, they must be none
};

//
// StackWriter: Writes out binary format stack machine code for a Binaryen IR expression
//
// A stack writer has one of three modes:
//  * Binaryen2Binary: directly writes the expression to wasm binary
//  * Binaryen2Stack: queues the expressions linearly, in Stack IR (SIR)
//  * Stack2Binary: emits SIR to wasm binary
//
// Direct writing, in Binaryen2Binary, is fast. Otherwise, Binaryen2Stack
// lets you optimize the Stack IR before running Stack2Binary (but the cost
// is that the extra IR in the middle makes things 20% slower than direct
// Binaryen2Binary).
//
// To reduce the amount of boilerplate code here, we implement all 3 in
// a single class, templated on the mode. This allows compilers to trivially
// optimize out irrelevant code paths, and there should be no runtime
// downside.
//

enum class StackWriterMode {
  Binaryen2Binary, Binaryen2Stack, Stack2Binary
};

template<StackWriterMode Mode, typename Parent>
class StackWriter : public Visitor<StackWriter<Mode, Parent>> {
public:
  StackWriter(Parent& parent, BufferWithRandomAccess& o, bool sourceMap=false, bool debug=false)
    : parent(parent), o(o), sourceMap(sourceMap), debug(debug), allocator(parent.getModule()->allocator) {}

  StackIR stackIR; // filled in Binaryen2Stack, read in Stack2Binary

  std::map<Type, size_t> numLocalsByType; // type => number of locals of that type in the compact form

  // visits a node, emitting the proper code for it
  void visit(Expression* curr);
  // emits a node, but if it is a block with no name, emit a list of its contents
  void visitPossibleBlockContents(Expression* curr);
  // visits a child node. (in some modes we may not want to visit children,
  // that logic is handled here)
  void visitChild(Expression* curr);

  void visitBlock(Block* curr);
  void visitBlockEnd(Block* curr);

  void visitIf(If* curr);
  void visitIfElse(If* curr);
  void visitIfEnd(If* curr);

  void visitLoop(Loop* curr);
  void visitLoopEnd(Loop* curr);

  void visitBreak(Break* curr);
  void visitSwitch(Switch* curr);
  void visitCall(Call* curr);
  void visitCallIndirect(CallIndirect* curr);
  void visitGetLocal(GetLocal* curr);
  void visitSetLocal(SetLocal* curr);
  void visitGetGlobal(GetGlobal* curr);
  void visitSetGlobal(SetGlobal* curr);
  void visitLoad(Load* curr);
  void visitStore(Store* curr);
  void visitAtomicRMW(AtomicRMW* curr);
  void visitAtomicCmpxchg(AtomicCmpxchg* curr);
  void visitAtomicWait(AtomicWait* curr);
  void visitAtomicWake(AtomicWake* curr);
  void visitSIMDExtract(SIMDExtract* curr);
  void visitSIMDReplace(SIMDReplace* curr);
  void visitSIMDShuffle(SIMDShuffle* curr);
  void visitSIMDBitselect(SIMDBitselect* curr);
  void visitSIMDShift(SIMDShift* curr);
  void visitConst(Const* curr);
  void visitUnary(Unary* curr);
  void visitBinary(Binary* curr);
  void visitSelect(Select* curr);
  void visitReturn(Return* curr);
  void visitHost(Host* curr);
  void visitNop(Nop* curr);
  void visitUnreachable(Unreachable* curr);
  void visitDrop(Drop* curr);

  // We need to emit extra unreachable opcodes in some cases
  void emitExtraUnreachable();

  // If we are in Binaryen2Stack, then this adds the item to the
  // stack IR and returns true, which is all we need to do for
  // non-control flow expressions.
  bool justAddToStack(Expression* curr);

  void setFunction(Function* funcInit) {
    func = funcInit;
  }

  void mapLocalsAndEmitHeader();

protected:
  Parent& parent;
  BufferWithRandomAccess& o;
  bool sourceMap;
  bool debug;

  MixedArena& allocator;

  Function* func;

  std::map<Index, size_t> mappedLocals; // local index => index in compact form of [all int32s][all int64s]etc

  std::vector<Name> breakStack;

  int32_t getBreakIndex(Name name);
  void emitMemoryAccess(size_t alignment, size_t bytes, uint32_t offset);

  void finishFunctionBody();

  StackInst* makeStackInst(StackInst::Op op, Expression* origin);
  StackInst* makeStackInst(Expression* origin) {
    return makeStackInst(StackInst::Basic, origin);
  }
};

// Write out a single expression, such as an offset for a global segment.
template<typename Parent>
class ExpressionStackWriter : StackWriter<StackWriterMode::Binaryen2Binary, Parent> {
public:
  ExpressionStackWriter(Expression* curr, Parent& parent, BufferWithRandomAccess& o, bool debug=false) :
    StackWriter<StackWriterMode::Binaryen2Binary, Parent>(parent, o, /* sourceMap= */ false, debug) {
    this->visit(curr);
  }
};

// Write out a function body, including the local header info.
template<typename Parent>
class FunctionStackWriter : StackWriter<StackWriterMode::Binaryen2Binary, Parent> {
public:
  FunctionStackWriter(Function* funcInit, Parent& parent, BufferWithRandomAccess& o, bool sourceMap=false, bool debug=false) :
    StackWriter<StackWriterMode::Binaryen2Binary, Parent>(parent, o, sourceMap, debug) {
    this->setFunction(funcInit);
    this->mapLocalsAndEmitHeader();
    this->visitPossibleBlockContents(this->func->body);
    this->finishFunctionBody();
  }
};

// Use Stack IR to write the function body
template<typename Parent>
class StackIRFunctionStackWriter : StackWriter<StackWriterMode::Stack2Binary, Parent> {
public:
  StackIRFunctionStackWriter(Function* funcInit, Parent& parent, BufferWithRandomAccess& o, bool debug=false) :
    StackWriter<StackWriterMode::Stack2Binary, Parent>(parent, o, false, debug) {
    this->setFunction(funcInit);
    this->mapLocalsAndEmitHeader();
    for (auto* inst : *funcInit->stackIR) {
      if (!inst) continue; // a nullptr is just something we can skip
      switch (inst->op) {
        case StackInst::Basic:
        case StackInst::BlockBegin:
        case StackInst::IfBegin:
        case StackInst::LoopBegin: {
          this->visit(inst->origin);
          break;
        }
        case StackInst::BlockEnd: {
          this->visitBlockEnd(inst->origin->template cast<Block>());
          break;
        }
        case StackInst::IfElse: {
          this->visitIfElse(inst->origin->template cast<If>());
          break;
        }
        case StackInst::IfEnd: {
          this->visitIfEnd(inst->origin->template cast<If>());
          break;
        }
        case StackInst::LoopEnd: {
          this->visitLoopEnd(inst->origin->template cast<Loop>());
          break;
        }
        default: WASM_UNREACHABLE();
      }
    }
    this->finishFunctionBody();
  }
};

//
// Implementations
//

// StackWriter

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::mapLocalsAndEmitHeader() {
  if (func->prologLocation.size()) {
    parent.writeDebugLocation(*func->prologLocation.begin());
  }
  // Map them
  for (Index i = 0; i < func->getNumParams(); i++) {
    size_t curr = mappedLocals.size();
    mappedLocals[i] = curr;
  }
  for (auto type : func->vars) {
    numLocalsByType[type]++;
  }
  std::map<Type, size_t> currLocalsByType;
  for (Index i = func->getVarIndexBase(); i < func->getNumLocals(); i++) {
    size_t index = func->getVarIndexBase();
    Type type = func->getLocalType(i);
    currLocalsByType[type]++; // increment now for simplicity, must decrement it in returns
    if (type == i32) {
      mappedLocals[i] = index + currLocalsByType[i32] - 1;
      continue;
    }
    index += numLocalsByType[i32];
    if (type == i64) {
      mappedLocals[i] = index + currLocalsByType[i64] - 1;
      continue;
    }
    index += numLocalsByType[i64];
    if (type == f32) {
      mappedLocals[i] = index + currLocalsByType[f32] - 1;
      continue;
    }
    index += numLocalsByType[f32];
    if (type == f64) {
      mappedLocals[i] = index + currLocalsByType[f64] - 1;
      continue;
    }
    index += numLocalsByType[f64];
    if (type == v128) {
      mappedLocals[i] = index + currLocalsByType[v128] - 1;
      continue;
    }
    WASM_UNREACHABLE();
  }
  // Emit them.
  o << U32LEB(
      (numLocalsByType[i32] ? 1 : 0) +
      (numLocalsByType[i64] ? 1 : 0) +
      (numLocalsByType[f32] ? 1 : 0) +
      (numLocalsByType[f64] ? 1 : 0) +
      (numLocalsByType[v128] ? 1 : 0)
              );
  if (numLocalsByType[i32]) o << U32LEB(numLocalsByType[i32]) << binaryType(i32);
  if (numLocalsByType[i64]) o << U32LEB(numLocalsByType[i64]) << binaryType(i64);
  if (numLocalsByType[f32]) o << U32LEB(numLocalsByType[f32]) << binaryType(f32);
  if (numLocalsByType[f64]) o << U32LEB(numLocalsByType[f64]) << binaryType(f64);
  if (numLocalsByType[v128]) o << U32LEB(numLocalsByType[v128]) << binaryType(v128);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visit(Expression* curr) {
  if (Mode == StackWriterMode::Binaryen2Binary && sourceMap) {
    parent.writeDebugLocation(curr, func);
  }
  Visitor<StackWriter>::visit(curr);
}

// emits a node, but if it is a block with no name, emit a list of its contents
template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitPossibleBlockContents(Expression* curr) {
  auto* block = curr->dynCast<Block>();
  if (!block || BranchUtils::BranchSeeker::hasNamed(block, block->name)) {
    visitChild(curr);
    return;
  }
  for (auto* child : block->list) {
    visitChild(child);
  }
  if (block->type == unreachable && block->list.back()->type != unreachable) {
    // similar to in visitBlock, here we could skip emitting the block itself,
    // but must still end the 'block' (the contents, really) with an unreachable
    emitExtraUnreachable();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitChild(Expression* curr) {
  // In stack => binary, we don't need to visit child nodes, everything
  // is already in the linear stream.
  if (Mode != StackWriterMode::Stack2Binary) {
    visit(curr);
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitBlock(Block* curr) {
  if (Mode == StackWriterMode::Binaryen2Stack) {
    stackIR.push_back(makeStackInst(StackInst::BlockBegin, curr));
  } else {
    if (debug) std::cerr << "zz node: Block" << std::endl;
    o << int8_t(BinaryConsts::Block);
    o << binaryType(curr->type != unreachable ? curr->type : none);
  }
  breakStack.push_back(curr->name); // TODO: we don't need to do this in Binaryen2Stack
  Index i = 0;
  for (auto* child : curr->list) {
    if (debug) std::cerr << "  " << size_t(curr) << "\n zz Block element " << i++ << std::endl;
    visitChild(child);
  }
  // in Stack2Binary the block ending is in the stream later on
  if (Mode == StackWriterMode::Stack2Binary) {
    return;
  }
  visitBlockEnd(curr);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitBlockEnd(Block* curr) {
  if (curr->type == unreachable) {
    // an unreachable block is one that cannot be exited. We cannot encode this directly
    // in wasm, where blocks must be none,i32,i64,f32,f64. Since the block cannot be
    // exited, we can emit an unreachable at the end, and that will always be valid,
    // and then the block is ok as a none
    emitExtraUnreachable();
  }
  if (Mode == StackWriterMode::Binaryen2Stack) {
    stackIR.push_back(makeStackInst(StackInst::BlockEnd, curr));
  } else {
    o << int8_t(BinaryConsts::End);
  }
  assert(!breakStack.empty());
  breakStack.pop_back();
  if (curr->type == unreachable) {
    // and emit an unreachable *outside* the block too, so later things can pop anything
    emitExtraUnreachable();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitIf(If* curr) {
  if (debug) std::cerr << "zz node: If" << std::endl;
  if (curr->condition->type == unreachable) {
    // this if-else is unreachable because of the condition, i.e., the condition
    // does not exit. So don't emit the if, but do consume the condition
    visitChild(curr->condition);
    emitExtraUnreachable();
    return;
  }
  visitChild(curr->condition);
  if (Mode == StackWriterMode::Binaryen2Stack) {
    stackIR.push_back(makeStackInst(StackInst::IfBegin, curr));
  } else {
    o << int8_t(BinaryConsts::If);
    o << binaryType(curr->type != unreachable ? curr->type : none);
  }
  breakStack.push_back(IMPOSSIBLE_CONTINUE); // the binary format requires this; we have a block if we need one
                                             // TODO: optimize this in Stack IR (if child is a block, we
                                             //       may break to this instead)
  visitPossibleBlockContents(curr->ifTrue); // TODO: emit block contents directly, if possible
  if (Mode == StackWriterMode::Stack2Binary) {
    return;
  }
  if (curr->ifFalse) {
    visitIfElse(curr);
  }
  visitIfEnd(curr);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitIfElse(If* curr) {
  assert(!breakStack.empty());
  breakStack.pop_back();
  if (Mode == StackWriterMode::Binaryen2Stack) {
    stackIR.push_back(makeStackInst(StackInst::IfElse, curr));
  } else {
    o << int8_t(BinaryConsts::Else);
  }
  breakStack.push_back(IMPOSSIBLE_CONTINUE); // TODO ditto
  visitPossibleBlockContents(curr->ifFalse);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitIfEnd(If* curr) {
  assert(!breakStack.empty());
  breakStack.pop_back();
  if (Mode == StackWriterMode::Binaryen2Stack) {
    stackIR.push_back(makeStackInst(StackInst::IfEnd, curr));
  } else {
    o << int8_t(BinaryConsts::End);
  }
  if (curr->type == unreachable) {
    // we already handled the case of the condition being unreachable. otherwise,
    // we may still be unreachable, if we are an if-else with both sides unreachable.
    // wasm does not allow this to be emitted directly, so we must do something more. we could do
    // better, but for now we emit an extra unreachable instruction after the if, so it is not consumed itself,
    assert(curr->ifFalse);
    emitExtraUnreachable();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitLoop(Loop* curr) {
  if (debug) std::cerr << "zz node: Loop" << std::endl;
  if (Mode == StackWriterMode::Binaryen2Stack) {
    stackIR.push_back(makeStackInst(StackInst::LoopBegin, curr));
  } else {
    o << int8_t(BinaryConsts::Loop);
    o << binaryType(curr->type != unreachable ? curr->type : none);
  }
  breakStack.push_back(curr->name);
  visitPossibleBlockContents(curr->body);
  if (Mode == StackWriterMode::Stack2Binary) {
    return;
  }
  visitLoopEnd(curr);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitLoopEnd(Loop* curr) {
  assert(!breakStack.empty());
  breakStack.pop_back();
  if (curr->type == unreachable) {
    // we emitted a loop without a return type, and the body might be
    // block contents, so ensure it is not consumed
    emitExtraUnreachable();
  }
  if (Mode == StackWriterMode::Binaryen2Stack) {
    stackIR.push_back(makeStackInst(StackInst::LoopEnd, curr));
  } else {
    o << int8_t(BinaryConsts::End);
  }
  if (curr->type == unreachable) {
    // we emitted a loop without a return type, so it must not be consumed
    emitExtraUnreachable();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitBreak(Break* curr) {
  if (debug) std::cerr << "zz node: Break" << std::endl;
  if (curr->value) {
    visitChild(curr->value);
  }
  if (curr->condition) visitChild(curr->condition);
  if (!justAddToStack(curr)) {
    o << int8_t(curr->condition ? BinaryConsts::BrIf : BinaryConsts::Br)
      << U32LEB(getBreakIndex(curr->name));
  }
  if (curr->condition && curr->type == unreachable) {
    // a br_if is normally none or emits a value. if it is unreachable,
    // then either the condition or the value is unreachable, which is
    // extremely rare, and may require us to make the stack polymorphic
    // (if the block we branch to has a value, we may lack one as we
    // are not a reachable branch; the wasm spec on the other hand does
    // presume the br_if emits a value of the right type, even if it
    // popped unreachable)
    emitExtraUnreachable();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitSwitch(Switch* curr) {
  if (debug) std::cerr << "zz node: Switch" << std::endl;
  if (curr->value) {
    visitChild(curr->value);
  }
  visitChild(curr->condition);
  if (!BranchUtils::isBranchReachable(curr)) {
    // if the branch is not reachable, then it's dangerous to emit it, as
    // wasm type checking rules are different, especially in unreachable
    // code. so just don't emit that unreachable code.
    emitExtraUnreachable();
    return;
  }
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::TableSwitch) << U32LEB(curr->targets.size());
  for (auto target : curr->targets) {
    o << U32LEB(getBreakIndex(target));
  }
  o << U32LEB(getBreakIndex(curr->default_));
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitCall(Call* curr) {
  if (debug) std::cerr << "zz node: Call" << std::endl;
  for (auto* operand : curr->operands) {
    visitChild(operand);
  }
  if (!justAddToStack(curr)) {
    o << int8_t(BinaryConsts::CallFunction) << U32LEB(parent.getFunctionIndex(curr->target));
  }
  if (curr->type == unreachable) { // TODO FIXME: this and similar can be removed
    emitExtraUnreachable();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitCallIndirect(CallIndirect* curr) {
  if (debug) std::cerr << "zz node: CallIndirect" << std::endl;
  for (auto* operand : curr->operands) {
    visitChild(operand);
  }
  visitChild(curr->target);
  if (!justAddToStack(curr)) {
    o << int8_t(BinaryConsts::CallIndirect)
      << U32LEB(parent.getFunctionTypeIndex(curr->fullType))
      << U32LEB(0); // Reserved flags field
  }
  if (curr->type == unreachable) {
    emitExtraUnreachable();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitGetLocal(GetLocal* curr) {
  if (debug) std::cerr << "zz node: GetLocal " << (o.size() + 1) << std::endl;
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::GetLocal) << U32LEB(mappedLocals[curr->index]);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitSetLocal(SetLocal* curr) {
  if (debug) std::cerr << "zz node: Set|TeeLocal" << std::endl;
  visitChild(curr->value);
  if (!justAddToStack(curr)) {
    o << int8_t(curr->isTee() ? BinaryConsts::TeeLocal : BinaryConsts::SetLocal) << U32LEB(mappedLocals[curr->index]);
  }
  if (curr->type == unreachable) {
    emitExtraUnreachable();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitGetGlobal(GetGlobal* curr) {
  if (debug) std::cerr << "zz node: GetGlobal " << (o.size() + 1) << std::endl;
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::GetGlobal) << U32LEB(parent.getGlobalIndex(curr->name));
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitSetGlobal(SetGlobal* curr) {
  if (debug) std::cerr << "zz node: SetGlobal" << std::endl;
  visitChild(curr->value);
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::SetGlobal) << U32LEB(parent.getGlobalIndex(curr->name));
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitLoad(Load* curr) {
  if (debug) std::cerr << "zz node: Load" << std::endl;
  visitChild(curr->ptr);
  if (curr->type == unreachable) {
    // don't even emit it; we don't know the right type
    emitExtraUnreachable();
    return;
  }
  if (justAddToStack(curr)) return;
  if (!curr->isAtomic) {
    switch (curr->type) {
      case i32: {
        switch (curr->bytes) {
          case 1: o << int8_t(curr->signed_ ? BinaryConsts::I32LoadMem8S : BinaryConsts::I32LoadMem8U); break;
          case 2: o << int8_t(curr->signed_ ? BinaryConsts::I32LoadMem16S : BinaryConsts::I32LoadMem16U); break;
          case 4: o << int8_t(BinaryConsts::I32LoadMem); break;
          default: abort();
        }
        break;
      }
      case i64: {
        switch (curr->bytes) {
          case 1: o << int8_t(curr->signed_ ? BinaryConsts::I64LoadMem8S : BinaryConsts::I64LoadMem8U); break;
          case 2: o << int8_t(curr->signed_ ? BinaryConsts::I64LoadMem16S : BinaryConsts::I64LoadMem16U); break;
          case 4: o << int8_t(curr->signed_ ? BinaryConsts::I64LoadMem32S : BinaryConsts::I64LoadMem32U); break;
          case 8: o << int8_t(BinaryConsts::I64LoadMem); break;
          default: abort();
        }
        break;
      }
      case f32: o << int8_t(BinaryConsts::F32LoadMem); break;
      case f64: o << int8_t(BinaryConsts::F64LoadMem); break;
      case v128: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::V128Load); break;
      case unreachable: return; // the pointer is unreachable, so we are never reached; just don't emit a load
      case none: WASM_UNREACHABLE();
    }
  } else {
    o << int8_t(BinaryConsts::AtomicPrefix);
    switch (curr->type) {
      case i32: {
        switch (curr->bytes) {
          case 1: o << int8_t(BinaryConsts::I32AtomicLoad8U); break;
          case 2: o << int8_t(BinaryConsts::I32AtomicLoad16U); break;
          case 4: o << int8_t(BinaryConsts::I32AtomicLoad); break;
          default: WASM_UNREACHABLE();
        }
        break;
      }
      case i64: {
        switch (curr->bytes) {
          case 1: o << int8_t(BinaryConsts::I64AtomicLoad8U); break;
          case 2: o << int8_t(BinaryConsts::I64AtomicLoad16U); break;
          case 4: o << int8_t(BinaryConsts::I64AtomicLoad32U); break;
          case 8: o << int8_t(BinaryConsts::I64AtomicLoad); break;
          default: WASM_UNREACHABLE();
        }
        break;
      }
      case unreachable: return;
      default: WASM_UNREACHABLE();
    }
  }
  emitMemoryAccess(curr->align, curr->bytes, curr->offset);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitStore(Store* curr) {
  if (debug) std::cerr << "zz node: Store" << std::endl;
  visitChild(curr->ptr);
  visitChild(curr->value);
  if (curr->type == unreachable) {
    // don't even emit it; we don't know the right type
    emitExtraUnreachable();
    return;
  }
  if (justAddToStack(curr)) return;
  if (!curr->isAtomic) {
    switch (curr->valueType) {
      case i32: {
        switch (curr->bytes) {
          case 1: o << int8_t(BinaryConsts::I32StoreMem8); break;
          case 2: o << int8_t(BinaryConsts::I32StoreMem16); break;
          case 4: o << int8_t(BinaryConsts::I32StoreMem); break;
          default: abort();
        }
        break;
      }
      case i64: {
        switch (curr->bytes) {
          case 1: o << int8_t(BinaryConsts::I64StoreMem8); break;
          case 2: o << int8_t(BinaryConsts::I64StoreMem16); break;
          case 4: o << int8_t(BinaryConsts::I64StoreMem32); break;
          case 8: o << int8_t(BinaryConsts::I64StoreMem); break;
          default: abort();
        }
        break;
      }
      case f32: o << int8_t(BinaryConsts::F32StoreMem); break;
      case f64: o << int8_t(BinaryConsts::F64StoreMem); break;
      case v128: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::V128Store); break;
      case none:
      case unreachable: WASM_UNREACHABLE();
    }
  } else {
    o << int8_t(BinaryConsts::AtomicPrefix);
    switch (curr->valueType) {
      case i32: {
        switch (curr->bytes) {
          case 1: o << int8_t(BinaryConsts::I32AtomicStore8); break;
          case 2: o << int8_t(BinaryConsts::I32AtomicStore16); break;
          case 4: o << int8_t(BinaryConsts::I32AtomicStore); break;
          default: WASM_UNREACHABLE();
        }
        break;
      }
      case i64: {
        switch (curr->bytes) {
          case 1: o << int8_t(BinaryConsts::I64AtomicStore8); break;
          case 2: o << int8_t(BinaryConsts::I64AtomicStore16); break;
          case 4: o << int8_t(BinaryConsts::I64AtomicStore32); break;
          case 8: o << int8_t(BinaryConsts::I64AtomicStore); break;
          default: WASM_UNREACHABLE();
        }
        break;
      }
      default: WASM_UNREACHABLE();
    }
  }
  emitMemoryAccess(curr->align, curr->bytes, curr->offset);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitAtomicRMW(AtomicRMW* curr) {
  if (debug) std::cerr << "zz node: AtomicRMW" << std::endl;
  visitChild(curr->ptr);
  // stop if the rest isn't reachable anyhow
  if (curr->ptr->type == unreachable) return;
  visitChild(curr->value);
  if (curr->value->type == unreachable) return;
  if (curr->type == unreachable) {
    // don't even emit it; we don't know the right type
    emitExtraUnreachable();
    return;
  }
  if (justAddToStack(curr)) return;

  o << int8_t(BinaryConsts::AtomicPrefix);

#define CASE_FOR_OP(Op) \
  case Op: \
    switch (curr->type) {                                               \
      case i32:                                                         \
        switch (curr->bytes) {                                          \
          case 1: o << int8_t(BinaryConsts::I32AtomicRMW##Op##8U); break; \
          case 2: o << int8_t(BinaryConsts::I32AtomicRMW##Op##16U); break; \
          case 4: o << int8_t(BinaryConsts::I32AtomicRMW##Op); break;   \
          default: WASM_UNREACHABLE();                                  \
        }                                                               \
        break;                                                          \
      case i64:                                                         \
        switch (curr->bytes) {                                          \
          case 1: o << int8_t(BinaryConsts::I64AtomicRMW##Op##8U); break; \
          case 2: o << int8_t(BinaryConsts::I64AtomicRMW##Op##16U); break; \
          case 4: o << int8_t(BinaryConsts::I64AtomicRMW##Op##32U); break; \
          case 8: o << int8_t(BinaryConsts::I64AtomicRMW##Op); break;   \
          default: WASM_UNREACHABLE();                                  \
        }                                                               \
        break;                                                          \
      default: WASM_UNREACHABLE();                                      \
    }                                                                   \
    break

  switch(curr->op) {
    CASE_FOR_OP(Add);
    CASE_FOR_OP(Sub);
    CASE_FOR_OP(And);
    CASE_FOR_OP(Or);
    CASE_FOR_OP(Xor);
    CASE_FOR_OP(Xchg);
    default: WASM_UNREACHABLE();
  }
#undef CASE_FOR_OP

  emitMemoryAccess(curr->bytes, curr->bytes, curr->offset);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitAtomicCmpxchg(AtomicCmpxchg* curr) {
  if (debug) std::cerr << "zz node: AtomicCmpxchg" << std::endl;
  visitChild(curr->ptr);
  // stop if the rest isn't reachable anyhow
  if (curr->ptr->type == unreachable) return;
  visitChild(curr->expected);
  if (curr->expected->type == unreachable) return;
  visitChild(curr->replacement);
  if (curr->replacement->type == unreachable) return;
  if (curr->type == unreachable) {
    // don't even emit it; we don't know the right type
    emitExtraUnreachable();
    return;
  }
  if (justAddToStack(curr)) return;

  o << int8_t(BinaryConsts::AtomicPrefix);
  switch (curr->type) {
    case i32:
      switch (curr->bytes) {
        case 1: o << int8_t(BinaryConsts::I32AtomicCmpxchg8U); break;
        case 2: o << int8_t(BinaryConsts::I32AtomicCmpxchg16U); break;
        case 4: o << int8_t(BinaryConsts::I32AtomicCmpxchg); break;
        default: WASM_UNREACHABLE();
      }
      break;
    case i64:
      switch (curr->bytes) {
        case 1: o << int8_t(BinaryConsts::I64AtomicCmpxchg8U); break;
        case 2: o << int8_t(BinaryConsts::I64AtomicCmpxchg16U); break;
        case 4: o << int8_t(BinaryConsts::I64AtomicCmpxchg32U); break;
        case 8: o << int8_t(BinaryConsts::I64AtomicCmpxchg); break;
        default: WASM_UNREACHABLE();
      }
      break;
    default: WASM_UNREACHABLE();
  }
  emitMemoryAccess(curr->bytes, curr->bytes, curr->offset);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitAtomicWait(AtomicWait* curr) {
  if (debug) std::cerr << "zz node: AtomicWait" << std::endl;
  visitChild(curr->ptr);
  // stop if the rest isn't reachable anyhow
  if (curr->ptr->type == unreachable) return;
  visitChild(curr->expected);
  if (curr->expected->type == unreachable) return;
  visitChild(curr->timeout);
  if (curr->timeout->type == unreachable) return;
  if (justAddToStack(curr)) return;

  o << int8_t(BinaryConsts::AtomicPrefix);
  switch (curr->expectedType) {
    case i32: {
      o << int8_t(BinaryConsts::I32AtomicWait);
      emitMemoryAccess(4, 4, 0);
      break;
    }
    case i64: {
      o << int8_t(BinaryConsts::I64AtomicWait);
      emitMemoryAccess(8, 8, 0);
      break;
    }
    default: WASM_UNREACHABLE();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitAtomicWake(AtomicWake* curr) {
  if (debug) std::cerr << "zz node: AtomicWake" << std::endl;
  visitChild(curr->ptr);
  // stop if the rest isn't reachable anyhow
  if (curr->ptr->type == unreachable) return;
  visitChild(curr->wakeCount);
  if (curr->wakeCount->type == unreachable) return;
  if (justAddToStack(curr)) return;

  o << int8_t(BinaryConsts::AtomicPrefix) << int8_t(BinaryConsts::AtomicWake);
  emitMemoryAccess(4, 4, 0);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitSIMDExtract(SIMDExtract* curr) {
  visitChild(curr->vec);
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::SIMDPrefix);
  switch (curr->op) {
    case ExtractLaneSVecI8x16: o << U32LEB(BinaryConsts::I8x16ExtractLaneS); break;
    case ExtractLaneUVecI8x16: o << U32LEB(BinaryConsts::I8x16ExtractLaneU); break;
    case ExtractLaneSVecI16x8: o << U32LEB(BinaryConsts::I16x8ExtractLaneS); break;
    case ExtractLaneUVecI16x8: o << U32LEB(BinaryConsts::I16x8ExtractLaneU); break;
    case ExtractLaneVecI32x4: o << U32LEB(BinaryConsts::I32x4ExtractLane); break;
    case ExtractLaneVecI64x2: o << U32LEB(BinaryConsts::I64x2ExtractLane); break;
    case ExtractLaneVecF32x4: o << U32LEB(BinaryConsts::F32x4ExtractLane); break;
    case ExtractLaneVecF64x2: o << U32LEB(BinaryConsts::F64x2ExtractLane); break;
  }
  o << uint8_t(curr->index);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitSIMDReplace(SIMDReplace* curr) {
  visitChild(curr->vec);
  visitChild(curr->value);
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::SIMDPrefix);
  switch (curr->op) {
    case ReplaceLaneVecI8x16: o << U32LEB(BinaryConsts::I8x16ReplaceLane); break;
    case ReplaceLaneVecI16x8: o << U32LEB(BinaryConsts::I16x8ReplaceLane); break;
    case ReplaceLaneVecI32x4: o << U32LEB(BinaryConsts::I32x4ReplaceLane); break;
    case ReplaceLaneVecI64x2: o << U32LEB(BinaryConsts::I64x2ReplaceLane); break;
    case ReplaceLaneVecF32x4: o << U32LEB(BinaryConsts::F32x4ReplaceLane); break;
    case ReplaceLaneVecF64x2: o << U32LEB(BinaryConsts::F64x2ReplaceLane); break;
  }
  assert(curr->index < 16);
  o << uint8_t(curr->index);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitSIMDShuffle(SIMDShuffle* curr) {
  visitChild(curr->left);
  visitChild(curr->right);
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::V8x16Shuffle);
  for (uint8_t m : curr->mask) {
    o << m;
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitSIMDBitselect(SIMDBitselect* curr) {
  visitChild(curr->left);
  visitChild(curr->right);
  visitChild(curr->cond);
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::V128Bitselect);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitSIMDShift(SIMDShift* curr) {
  visitChild(curr->vec);
  visitChild(curr->shift);
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::SIMDPrefix);
  switch (curr->op) {
    case ShlVecI8x16:  o << U32LEB(BinaryConsts::I8x16Shl); break;
    case ShrSVecI8x16: o << U32LEB(BinaryConsts::I8x16ShrS); break;
    case ShrUVecI8x16: o << U32LEB(BinaryConsts::I8x16ShrU); break;
    case ShlVecI16x8:  o << U32LEB(BinaryConsts::I16x8Shl); break;
    case ShrSVecI16x8: o << U32LEB(BinaryConsts::I16x8ShrS); break;
    case ShrUVecI16x8: o << U32LEB(BinaryConsts::I16x8ShrU); break;
    case ShlVecI32x4:  o << U32LEB(BinaryConsts::I32x4Shl); break;
    case ShrSVecI32x4: o << U32LEB(BinaryConsts::I32x4ShrS); break;
    case ShrUVecI32x4: o << U32LEB(BinaryConsts::I32x4ShrU); break;
    case ShlVecI64x2:  o << U32LEB(BinaryConsts::I64x2Shl); break;
    case ShrSVecI64x2: o << U32LEB(BinaryConsts::I64x2ShrS); break;
    case ShrUVecI64x2: o << U32LEB(BinaryConsts::I64x2ShrU); break;
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitConst(Const* curr) {
  if (debug) std::cerr << "zz node: Const" << curr << " : " << curr->type << std::endl;
  if (justAddToStack(curr)) return;
  switch (curr->type) {
    case i32: {
      o << int8_t(BinaryConsts::I32Const) << S32LEB(curr->value.geti32());
      break;
    }
    case i64: {
      o << int8_t(BinaryConsts::I64Const) << S64LEB(curr->value.geti64());
      break;
    }
    case f32: {
      o << int8_t(BinaryConsts::F32Const) << curr->value.reinterpreti32();
      break;
    }
    case f64: {
      o << int8_t(BinaryConsts::F64Const) << curr->value.reinterpreti64();
      break;
    }
    case v128: {
      o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::V128Const);
      std::array<uint8_t, 16> v = curr->value.getv128();
      for (size_t i = 0; i < 16; ++i) {
        o << uint8_t(v[i]);
      }
      break;
    }
    case none:
    case unreachable:
      WASM_UNREACHABLE();
  }
  if (debug) std::cerr << "zz const node done.\n";
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitUnary(Unary* curr) {
  if (debug) std::cerr << "zz node: Unary" << std::endl;
  visitChild(curr->value);
  if (curr->type == unreachable) {
    emitExtraUnreachable();
    return;
  }
  if (justAddToStack(curr)) return;
  switch (curr->op) {
    case ClzInt32:               o << int8_t(BinaryConsts::I32Clz); break;
    case CtzInt32:               o << int8_t(BinaryConsts::I32Ctz); break;
    case PopcntInt32:            o << int8_t(BinaryConsts::I32Popcnt); break;
    case EqZInt32:               o << int8_t(BinaryConsts::I32EqZ); break;
    case ClzInt64:               o << int8_t(BinaryConsts::I64Clz); break;
    case CtzInt64:               o << int8_t(BinaryConsts::I64Ctz); break;
    case PopcntInt64:            o << int8_t(BinaryConsts::I64Popcnt); break;
    case EqZInt64:               o << int8_t(BinaryConsts::I64EqZ); break;
    case NegFloat32:             o << int8_t(BinaryConsts::F32Neg); break;
    case AbsFloat32:             o << int8_t(BinaryConsts::F32Abs); break;
    case CeilFloat32:            o << int8_t(BinaryConsts::F32Ceil); break;
    case FloorFloat32:           o << int8_t(BinaryConsts::F32Floor); break;
    case TruncFloat32:           o << int8_t(BinaryConsts::F32Trunc); break;
    case NearestFloat32:         o << int8_t(BinaryConsts::F32NearestInt); break;
    case SqrtFloat32:            o << int8_t(BinaryConsts::F32Sqrt); break;
    case NegFloat64:             o << int8_t(BinaryConsts::F64Neg); break;
    case AbsFloat64:             o << int8_t(BinaryConsts::F64Abs); break;
    case CeilFloat64:            o << int8_t(BinaryConsts::F64Ceil); break;
    case FloorFloat64:           o << int8_t(BinaryConsts::F64Floor); break;
    case TruncFloat64:           o << int8_t(BinaryConsts::F64Trunc); break;
    case NearestFloat64:         o << int8_t(BinaryConsts::F64NearestInt); break;
    case SqrtFloat64:            o << int8_t(BinaryConsts::F64Sqrt); break;
    case ExtendSInt32:           o << int8_t(BinaryConsts::I64STruncI32); break;
    case ExtendUInt32:           o << int8_t(BinaryConsts::I64UTruncI32); break;
    case WrapInt64:              o << int8_t(BinaryConsts::I32ConvertI64); break;
    case TruncUFloat32ToInt32:   o << int8_t(BinaryConsts::I32UTruncF32); break;
    case TruncUFloat32ToInt64:   o << int8_t(BinaryConsts::I64UTruncF32); break;
    case TruncSFloat32ToInt32:   o << int8_t(BinaryConsts::I32STruncF32); break;
    case TruncSFloat32ToInt64:   o << int8_t(BinaryConsts::I64STruncF32); break;
    case TruncUFloat64ToInt32:   o << int8_t(BinaryConsts::I32UTruncF64); break;
    case TruncUFloat64ToInt64:   o << int8_t(BinaryConsts::I64UTruncF64); break;
    case TruncSFloat64ToInt32:   o << int8_t(BinaryConsts::I32STruncF64); break;
    case TruncSFloat64ToInt64:   o << int8_t(BinaryConsts::I64STruncF64); break;
    case ConvertUInt32ToFloat32: o << int8_t(BinaryConsts::F32UConvertI32); break;
    case ConvertUInt32ToFloat64: o << int8_t(BinaryConsts::F64UConvertI32); break;
    case ConvertSInt32ToFloat32: o << int8_t(BinaryConsts::F32SConvertI32); break;
    case ConvertSInt32ToFloat64: o << int8_t(BinaryConsts::F64SConvertI32); break;
    case ConvertUInt64ToFloat32: o << int8_t(BinaryConsts::F32UConvertI64); break;
    case ConvertUInt64ToFloat64: o << int8_t(BinaryConsts::F64UConvertI64); break;
    case ConvertSInt64ToFloat32: o << int8_t(BinaryConsts::F32SConvertI64); break;
    case ConvertSInt64ToFloat64: o << int8_t(BinaryConsts::F64SConvertI64); break;
    case DemoteFloat64:          o << int8_t(BinaryConsts::F32ConvertF64); break;
    case PromoteFloat32:         o << int8_t(BinaryConsts::F64ConvertF32); break;
    case ReinterpretFloat32:     o << int8_t(BinaryConsts::I32ReinterpretF32); break;
    case ReinterpretFloat64:     o << int8_t(BinaryConsts::I64ReinterpretF64); break;
    case ReinterpretInt32:       o << int8_t(BinaryConsts::F32ReinterpretI32); break;
    case ReinterpretInt64:       o << int8_t(BinaryConsts::F64ReinterpretI64); break;
    case ExtendS8Int32:          o << int8_t(BinaryConsts::I32ExtendS8); break;
    case ExtendS16Int32:         o << int8_t(BinaryConsts::I32ExtendS16); break;
    case ExtendS8Int64:          o << int8_t(BinaryConsts::I64ExtendS8); break;
    case ExtendS16Int64:         o << int8_t(BinaryConsts::I64ExtendS16); break;
    case ExtendS32Int64:         o << int8_t(BinaryConsts::I64ExtendS32); break;
    case TruncSatSFloat32ToInt32: o << int8_t(BinaryConsts::TruncSatPrefix) << U32LEB(BinaryConsts::I32STruncSatF32); break;
    case TruncSatUFloat32ToInt32: o << int8_t(BinaryConsts::TruncSatPrefix) << U32LEB(BinaryConsts::I32UTruncSatF32); break;
    case TruncSatSFloat64ToInt32: o << int8_t(BinaryConsts::TruncSatPrefix) << U32LEB(BinaryConsts::I32STruncSatF64); break;
    case TruncSatUFloat64ToInt32: o << int8_t(BinaryConsts::TruncSatPrefix) << U32LEB(BinaryConsts::I32UTruncSatF64); break;
    case TruncSatSFloat32ToInt64: o << int8_t(BinaryConsts::TruncSatPrefix) << U32LEB(BinaryConsts::I64STruncSatF32); break;
    case TruncSatUFloat32ToInt64: o << int8_t(BinaryConsts::TruncSatPrefix) << U32LEB(BinaryConsts::I64UTruncSatF32); break;
    case TruncSatSFloat64ToInt64: o << int8_t(BinaryConsts::TruncSatPrefix) << U32LEB(BinaryConsts::I64STruncSatF64); break;
    case TruncSatUFloat64ToInt64: o << int8_t(BinaryConsts::TruncSatPrefix) << U32LEB(BinaryConsts::I64UTruncSatF64); break;
    case SplatVecI8x16:   o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16Splat); break;
    case SplatVecI16x8:   o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8Splat); break;
    case SplatVecI32x4:   o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4Splat); break;
    case SplatVecI64x2:   o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I64x2Splat); break;
    case SplatVecF32x4:   o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Splat); break;
    case SplatVecF64x2:   o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Splat); break;
    case NotVec128:       o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::V128Not); break;
    case NegVecI8x16:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16Neg); break;
    case AnyTrueVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16AnyTrue); break;
    case AllTrueVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16AllTrue); break;
    case NegVecI16x8:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8Neg); break;
    case AnyTrueVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8AnyTrue); break;
    case AllTrueVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8AllTrue); break;
    case NegVecI32x4:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4Neg); break;
    case AnyTrueVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4AnyTrue); break;
    case AllTrueVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4AllTrue); break;
    case NegVecI64x2:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I64x2Neg); break;
    case AnyTrueVecI64x2: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I64x2AnyTrue); break;
    case AllTrueVecI64x2: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I64x2AllTrue); break;
    case AbsVecF32x4:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Abs); break;
    case NegVecF32x4:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Neg); break;
    case SqrtVecF32x4:    o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Sqrt); break;
    case AbsVecF64x2:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Abs); break;
    case NegVecF64x2:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Neg); break;
    case SqrtVecF64x2:    o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Sqrt); break;
    case TruncSatSVecF32x4ToVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4TruncSatSF32x4); break;
    case TruncSatUVecF32x4ToVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4TruncSatUF32x4); break;
    case TruncSatSVecF64x2ToVecI64x2: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I64x2TruncSatSF64x2); break;
    case TruncSatUVecF64x2ToVecI64x2: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I64x2TruncSatUF64x2); break;
    case ConvertSVecI32x4ToVecF32x4:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4ConvertSI32x4); break;
    case ConvertUVecI32x4ToVecF32x4:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4ConvertUI32x4); break;
    case ConvertSVecI64x2ToVecF64x2:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2ConvertSI64x2); break;
    case ConvertUVecI64x2ToVecF64x2:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2ConvertUI64x2); break;
    case InvalidUnary: WASM_UNREACHABLE();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitBinary(Binary* curr) {
  if (debug) std::cerr << "zz node: Binary" << std::endl;
  visitChild(curr->left);
  visitChild(curr->right);
  if (curr->type == unreachable) {
    emitExtraUnreachable();
    return;
  }
  if (justAddToStack(curr)) return;
  switch (curr->op) {
    case AddInt32:      o << int8_t(BinaryConsts::I32Add); break;
    case SubInt32:      o << int8_t(BinaryConsts::I32Sub); break;
    case MulInt32:      o << int8_t(BinaryConsts::I32Mul); break;
    case DivSInt32:     o << int8_t(BinaryConsts::I32DivS); break;
    case DivUInt32:     o << int8_t(BinaryConsts::I32DivU); break;
    case RemSInt32:     o << int8_t(BinaryConsts::I32RemS); break;
    case RemUInt32:     o << int8_t(BinaryConsts::I32RemU); break;
    case AndInt32:      o << int8_t(BinaryConsts::I32And); break;
    case OrInt32:       o << int8_t(BinaryConsts::I32Or); break;
    case XorInt32:      o << int8_t(BinaryConsts::I32Xor); break;
    case ShlInt32:      o << int8_t(BinaryConsts::I32Shl); break;
    case ShrUInt32:     o << int8_t(BinaryConsts::I32ShrU); break;
    case ShrSInt32:     o << int8_t(BinaryConsts::I32ShrS); break;
    case RotLInt32:     o << int8_t(BinaryConsts::I32RotL); break;
    case RotRInt32:     o << int8_t(BinaryConsts::I32RotR); break;
    case EqInt32:       o << int8_t(BinaryConsts::I32Eq); break;
    case NeInt32:       o << int8_t(BinaryConsts::I32Ne); break;
    case LtSInt32:      o << int8_t(BinaryConsts::I32LtS); break;
    case LtUInt32:      o << int8_t(BinaryConsts::I32LtU); break;
    case LeSInt32:      o << int8_t(BinaryConsts::I32LeS); break;
    case LeUInt32:      o << int8_t(BinaryConsts::I32LeU); break;
    case GtSInt32:      o << int8_t(BinaryConsts::I32GtS); break;
    case GtUInt32:      o << int8_t(BinaryConsts::I32GtU); break;
    case GeSInt32:      o << int8_t(BinaryConsts::I32GeS); break;
    case GeUInt32:      o << int8_t(BinaryConsts::I32GeU); break;

    case AddInt64:      o << int8_t(BinaryConsts::I64Add); break;
    case SubInt64:      o << int8_t(BinaryConsts::I64Sub); break;
    case MulInt64:      o << int8_t(BinaryConsts::I64Mul); break;
    case DivSInt64:     o << int8_t(BinaryConsts::I64DivS); break;
    case DivUInt64:     o << int8_t(BinaryConsts::I64DivU); break;
    case RemSInt64:     o << int8_t(BinaryConsts::I64RemS); break;
    case RemUInt64:     o << int8_t(BinaryConsts::I64RemU); break;
    case AndInt64:      o << int8_t(BinaryConsts::I64And); break;
    case OrInt64:       o << int8_t(BinaryConsts::I64Or); break;
    case XorInt64:      o << int8_t(BinaryConsts::I64Xor); break;
    case ShlInt64:      o << int8_t(BinaryConsts::I64Shl); break;
    case ShrUInt64:     o << int8_t(BinaryConsts::I64ShrU); break;
    case ShrSInt64:     o << int8_t(BinaryConsts::I64ShrS); break;
    case RotLInt64:     o << int8_t(BinaryConsts::I64RotL); break;
    case RotRInt64:     o << int8_t(BinaryConsts::I64RotR); break;
    case EqInt64:       o << int8_t(BinaryConsts::I64Eq); break;
    case NeInt64:       o << int8_t(BinaryConsts::I64Ne); break;
    case LtSInt64:      o << int8_t(BinaryConsts::I64LtS); break;
    case LtUInt64:      o << int8_t(BinaryConsts::I64LtU); break;
    case LeSInt64:      o << int8_t(BinaryConsts::I64LeS); break;
    case LeUInt64:      o << int8_t(BinaryConsts::I64LeU); break;
    case GtSInt64:      o << int8_t(BinaryConsts::I64GtS); break;
    case GtUInt64:      o << int8_t(BinaryConsts::I64GtU); break;
    case GeSInt64:      o << int8_t(BinaryConsts::I64GeS); break;
    case GeUInt64:      o << int8_t(BinaryConsts::I64GeU); break;

    case AddFloat32:      o << int8_t(BinaryConsts::F32Add); break;
    case SubFloat32:      o << int8_t(BinaryConsts::F32Sub); break;
    case MulFloat32:      o << int8_t(BinaryConsts::F32Mul); break;
    case DivFloat32:      o << int8_t(BinaryConsts::F32Div); break;
    case CopySignFloat32: o << int8_t(BinaryConsts::F32CopySign);break;
    case MinFloat32:      o << int8_t(BinaryConsts::F32Min); break;
    case MaxFloat32:      o << int8_t(BinaryConsts::F32Max); break;
    case EqFloat32:       o << int8_t(BinaryConsts::F32Eq); break;
    case NeFloat32:       o << int8_t(BinaryConsts::F32Ne); break;
    case LtFloat32:       o << int8_t(BinaryConsts::F32Lt); break;
    case LeFloat32:       o << int8_t(BinaryConsts::F32Le); break;
    case GtFloat32:       o << int8_t(BinaryConsts::F32Gt); break;
    case GeFloat32:       o << int8_t(BinaryConsts::F32Ge); break;

    case AddFloat64:      o << int8_t(BinaryConsts::F64Add); break;
    case SubFloat64:      o << int8_t(BinaryConsts::F64Sub); break;
    case MulFloat64:      o << int8_t(BinaryConsts::F64Mul); break;
    case DivFloat64:      o << int8_t(BinaryConsts::F64Div); break;
    case CopySignFloat64: o << int8_t(BinaryConsts::F64CopySign);break;
    case MinFloat64:      o << int8_t(BinaryConsts::F64Min); break;
    case MaxFloat64:      o << int8_t(BinaryConsts::F64Max); break;
    case EqFloat64:       o << int8_t(BinaryConsts::F64Eq); break;
    case NeFloat64:       o << int8_t(BinaryConsts::F64Ne); break;
    case LtFloat64:       o << int8_t(BinaryConsts::F64Lt); break;
    case LeFloat64:       o << int8_t(BinaryConsts::F64Le); break;
    case GtFloat64:       o << int8_t(BinaryConsts::F64Gt); break;
    case GeFloat64:       o << int8_t(BinaryConsts::F64Ge); break;

    case EqVecI8x16:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16Eq); break;
    case NeVecI8x16:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16Ne); break;
    case LtSVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16LtS); break;
    case LtUVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16LtU); break;
    case GtSVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16GtS); break;
    case GtUVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16GtU); break;
    case LeSVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16LeS); break;
    case LeUVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16LeU); break;
    case GeSVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16GeS); break;
    case GeUVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16GeU); break;
    case EqVecI16x8:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8Eq); break;
    case NeVecI16x8:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8Ne); break;
    case LtSVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8LtS); break;
    case LtUVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8LtU); break;
    case GtSVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8GtS); break;
    case GtUVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8GtU); break;
    case LeSVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8LeS); break;
    case LeUVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8LeU); break;
    case GeSVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8GeS); break;
    case GeUVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8GeU); break;
    case EqVecI32x4:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4Eq); break;
    case NeVecI32x4:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4Ne); break;
    case LtSVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4LtS); break;
    case LtUVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4LtU); break;
    case GtSVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4GtS); break;
    case GtUVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4GtU); break;
    case LeSVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4LeS); break;
    case LeUVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4LeU); break;
    case GeSVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4GeS); break;
    case GeUVecI32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4GeU); break;
    case EqVecF32x4:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Eq); break;
    case NeVecF32x4:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Ne); break;
    case LtVecF32x4:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Lt); break;
    case GtVecF32x4:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Gt); break;
    case LeVecF32x4:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Le); break;
    case GeVecF32x4:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Ge); break;
    case EqVecF64x2:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Eq); break;
    case NeVecF64x2:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Ne); break;
    case LtVecF64x2:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Lt); break;
    case GtVecF64x2:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Gt); break;
    case LeVecF64x2:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Le); break;
    case GeVecF64x2:  o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Ge); break;
    case AndVec128:   o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::V128And); break;
    case OrVec128:    o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::V128Or); break;
    case XorVec128:   o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::V128Xor); break;

    case AddVecI8x16:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16Add); break;
    case AddSatSVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16AddSatS); break;
    case AddSatUVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16AddSatU); break;
    case SubVecI8x16:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16Sub); break;
    case SubSatSVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16SubSatS); break;
    case SubSatUVecI8x16: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16SubSatU); break;
    case MulVecI8x16:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I8x16Mul); break;
    case AddVecI16x8:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8Add); break;
    case AddSatSVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8AddSatS); break;
    case AddSatUVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8AddSatU); break;
    case SubVecI16x8:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8Sub); break;
    case SubSatSVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8SubSatS); break;
    case SubSatUVecI16x8: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8SubSatU); break;
    case MulVecI16x8:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I16x8Mul); break;
    case AddVecI32x4:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4Add); break;
    case SubVecI32x4:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4Sub); break;
    case MulVecI32x4:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I32x4Mul); break;
    case AddVecI64x2:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I64x2Add); break;
    case SubVecI64x2:     o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::I64x2Sub); break;

    case AddVecF32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Add); break;
    case SubVecF32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Sub); break;
    case MulVecF32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Mul); break;
    case DivVecF32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Div); break;
    case MinVecF32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Min); break;
    case MaxVecF32x4: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F32x4Max); break;
    case AddVecF64x2: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Add); break;
    case SubVecF64x2: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Sub); break;
    case MulVecF64x2: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Mul); break;
    case DivVecF64x2: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Div); break;
    case MinVecF64x2: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Min); break;
    case MaxVecF64x2: o << int8_t(BinaryConsts::SIMDPrefix) << U32LEB(BinaryConsts::F64x2Max); break;
    case InvalidBinary: WASM_UNREACHABLE();
  }
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitSelect(Select* curr) {
  if (debug) std::cerr << "zz node: Select" << std::endl;
  visitChild(curr->ifTrue);
  visitChild(curr->ifFalse);
  visitChild(curr->condition);
  if (curr->type == unreachable) {
    emitExtraUnreachable();
    return;
  }
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::Select);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitReturn(Return* curr) {
  if (debug) std::cerr << "zz node: Return" << std::endl;
  if (curr->value) {
    visitChild(curr->value);
  }
  if (justAddToStack(curr)) return;

  o << int8_t(BinaryConsts::Return);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitHost(Host* curr) {
  if (debug) std::cerr << "zz node: Host" << std::endl;
  switch (curr->op) {
    case CurrentMemory: {
      break;
    }
    case GrowMemory: {
      visitChild(curr->operands[0]);
      break;
    }
  }
  if (justAddToStack(curr)) return;
  switch (curr->op) {
    case CurrentMemory: {
      o << int8_t(BinaryConsts::CurrentMemory);
      break;
    }
    case GrowMemory: {
      o << int8_t(BinaryConsts::GrowMemory);
      break;
    }
  }
  o << U32LEB(0); // Reserved flags field
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitNop(Nop* curr) {
  if (debug) std::cerr << "zz node: Nop" << std::endl;
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::Nop);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitUnreachable(Unreachable* curr) {
  if (debug) std::cerr << "zz node: Unreachable" << std::endl;
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::Unreachable);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::visitDrop(Drop* curr) {
  if (debug) std::cerr << "zz node: Drop" << std::endl;
  visitChild(curr->value);
  if (justAddToStack(curr)) return;
  o << int8_t(BinaryConsts::Drop);
}

template<StackWriterMode Mode, typename Parent>
int32_t StackWriter<Mode, Parent>::getBreakIndex(Name name) { // -1 if not found
  for (int i = breakStack.size() - 1; i >= 0; i--) {
    if (breakStack[i] == name) {
      return breakStack.size() - 1 - i;
    }
  }
  WASM_UNREACHABLE();
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::emitMemoryAccess(size_t alignment, size_t bytes, uint32_t offset) {
  o << U32LEB(Log2(alignment ? alignment : bytes));
  o << U32LEB(offset);
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::emitExtraUnreachable() {
  if (Mode == StackWriterMode::Binaryen2Stack) {
    stackIR.push_back(makeStackInst(Builder(allocator).makeUnreachable()));
  } else if (Mode == StackWriterMode::Binaryen2Binary) {
    o << int8_t(BinaryConsts::Unreachable);
  }
}

template<StackWriterMode Mode, typename Parent>
bool StackWriter<Mode, Parent>::justAddToStack(Expression* curr) {
  if (Mode == StackWriterMode::Binaryen2Stack) {
    stackIR.push_back(makeStackInst(curr));
    return true;
  }
  return false;
}

template<StackWriterMode Mode, typename Parent>
void StackWriter<Mode, Parent>::finishFunctionBody() {
  if (func->epilogLocation.size()) {
    parent.writeDebugLocation(*func->epilogLocation.begin());
  }
  o << int8_t(BinaryConsts::End);
}

template<StackWriterMode Mode, typename Parent>
StackInst* StackWriter<Mode, Parent>::makeStackInst(StackInst::Op op, Expression* origin) {
  auto* ret = allocator.alloc<StackInst>();
  ret->op = op;
  ret->origin = origin;
  auto stackType = origin->type;
  if (origin->is<Block>() || origin->is<Loop>() || origin->is<If>()) {
    if (stackType == unreachable) {
      // There are no unreachable blocks, loops, or ifs. we emit extra unreachables
      // to fix that up, so that they are valid as having none type.
      stackType = none;
    } else if (op != StackInst::BlockEnd &&
               op != StackInst::IfEnd &&
               op != StackInst::LoopEnd) {
      // If a concrete type is returned, we mark the end of the construct has
      // having that type (as it is pushed to the value stack at that point),
      // other parts are marked as none).
      stackType = none;
    }
  }
  ret->type = stackType;
  return ret;
}

} // namespace wasm

#endif // wasm_stack_h