summaryrefslogtreecommitdiff
path: root/src/wasm-stack.h
blob: fbd28b0d5d38b149d24c4c417bcf0c7ea704d541 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/*
 * Copyright 2018 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef wasm_stack_h
#define wasm_stack_h

#include "ir/branch-utils.h"
#include "pass.h"
#include "wasm-binary.h"
#include "wasm-traversal.h"
#include "wasm.h"

namespace wasm {

// Stack IR: an IR that represents code at the wasm binary format level,
// that is, a stack machine. Binaryen IR is *almost* identical to this,
// but as documented in README.md, there are a few differences, intended
// to make Binaryen IR fast and flexible for maximal optimization. Stack
// IR, on the other hand, is designed to optimize a few final things that
// can only really be done when modeling the stack machine format precisely.

// Currently the benefits of Stack IR are minor, less than 1% reduction in
// code size. For that reason it is just a secondary IR, run optionally
// after the main IR has been optimized. However, if we improve Stack IR
// optimizations to a point where they have a significant impact, it's
// possible that could motivate investigating replacing the main IR with Stack
// IR (so that we have just a single IR).

// A StackIR instance (see wasm.h) contains a linear sequence of
// stack instructions. This representation is very simple: just a single vector
// of all instructions, in order.
//  * nullptr is allowed in the vector, representing something to skip.
//    This is useful as a common thing optimizations do is remove instructions,
//    so this way we can do so without compacting the vector all the time.

// Direct writing binaryen IR to binary is fast. Otherwise, StackIRGenerator
// lets you optimize the Stack IR before emitting stack IR to binary (but the
// cost is that the extra IR in the middle makes things 20% slower than emitting
// binaryen IR to binary directly).

// A Stack IR instruction. Most just directly reflect a Binaryen IR node,
// but we need extra ones for certain things.
class StackInst {
public:
  StackInst(MixedArena&) {}

  enum Op {
    Basic,      // an instruction directly corresponding to a non-control-flow
                // Binaryen IR node
    BlockBegin, // the beginning of a block
    BlockEnd,   // the ending of a block
    IfBegin,    // the beginning of a if
    IfElse,     // the else of a if
    IfEnd,      // the ending of a if
    LoopBegin,  // the beginning of a loop
    LoopEnd,    // the ending of a loop
    TryBegin,   // the beginning of a try
    Catch,      // the catch within a try
    TryEnd      // the ending of a try
  } op;

  Expression* origin; // the expression this originates from

  // the type - usually identical to the origin type, but e.g. wasm has no
  // unreachable blocks, they must be none
  Type type;
};

class BinaryInstWriter : public OverriddenVisitor<BinaryInstWriter> {
public:
  BinaryInstWriter(WasmBinaryWriter& parent,
                   BufferWithRandomAccess& o,
                   Function* func,
                   bool sourceMap)
    : parent(parent), o(o), func(func), sourceMap(sourceMap) {}

  void visit(Expression* curr) {
    if (func && !sourceMap) {
      parent.writeDebugLocation(curr, func);
    }
    OverriddenVisitor<BinaryInstWriter>::visit(curr);
  }

  void visitBlock(Block* curr);
  void visitIf(If* curr);
  void visitLoop(Loop* curr);
  void visitBreak(Break* curr);
  void visitSwitch(Switch* curr);
  void visitCall(Call* curr);
  void visitCallIndirect(CallIndirect* curr);
  void visitLocalGet(LocalGet* curr);
  void visitLocalSet(LocalSet* curr);
  void visitGlobalGet(GlobalGet* curr);
  void visitGlobalSet(GlobalSet* curr);
  void visitLoad(Load* curr);
  void visitStore(Store* curr);
  void visitAtomicRMW(AtomicRMW* curr);
  void visitAtomicCmpxchg(AtomicCmpxchg* curr);
  void visitAtomicWait(AtomicWait* curr);
  void visitAtomicNotify(AtomicNotify* curr);
  void visitAtomicFence(AtomicFence* curr);
  void visitSIMDExtract(SIMDExtract* curr);
  void visitSIMDReplace(SIMDReplace* curr);
  void visitSIMDShuffle(SIMDShuffle* curr);
  void visitSIMDTernary(SIMDTernary* curr);
  void visitSIMDShift(SIMDShift* curr);
  void visitSIMDLoad(SIMDLoad* curr);
  void visitMemoryInit(MemoryInit* curr);
  void visitDataDrop(DataDrop* curr);
  void visitMemoryCopy(MemoryCopy* curr);
  void visitMemoryFill(MemoryFill* curr);
  void visitConst(Const* curr);
  void visitUnary(Unary* curr);
  void visitBinary(Binary* curr);
  void visitSelect(Select* curr);
  void visitReturn(Return* curr);
  void visitHost(Host* curr);
  void visitTry(Try* curr);
  void visitThrow(Throw* curr);
  void visitRethrow(Rethrow* curr);
  void visitBrOnExn(BrOnExn* curr);
  void visitNop(Nop* curr);
  void visitUnreachable(Unreachable* curr);
  void visitDrop(Drop* curr);
  void visitPush(Push* curr);
  void visitPop(Pop* curr);

  void emitIfElse();
  void emitCatch();
  void emitScopeEnd();    // emit an end at the end of a block/loop/if/try
  void emitFunctionEnd(); // emit an end at the end of a function
  void emitUnreachable();
  void mapLocalsAndEmitHeader();

private:
  void emitMemoryAccess(size_t alignment, size_t bytes, uint32_t offset);
  int32_t getBreakIndex(Name name);

  WasmBinaryWriter& parent;
  BufferWithRandomAccess& o;
  Function* func = nullptr;
  bool sourceMap;

  std::vector<Name> breakStack;

  // type => number of locals of that type in the compact form
  std::map<Type, size_t> numLocalsByType;
  // local index => index in compact form of [all int32s][all int64s]etc
  std::map<Index, size_t> mappedLocals;
};

// Takes binaryen IR and converts it to something else (binary or stack IR)
template<typename SubType>
class BinaryenIRWriter : public OverriddenVisitor<BinaryenIRWriter<SubType>> {
public:
  BinaryenIRWriter(Function* func) : func(func) {}

  void write();

  // visits a node, emitting the proper code for it
  void visit(Expression* curr);

  void visitBlock(Block* curr);
  void visitIf(If* curr);
  void visitLoop(Loop* curr);
  void visitBreak(Break* curr);
  void visitSwitch(Switch* curr);
  void visitCall(Call* curr);
  void visitCallIndirect(CallIndirect* curr);
  void visitLocalGet(LocalGet* curr);
  void visitLocalSet(LocalSet* curr);
  void visitGlobalGet(GlobalGet* curr);
  void visitGlobalSet(GlobalSet* curr);
  void visitLoad(Load* curr);
  void visitStore(Store* curr);
  void visitAtomicRMW(AtomicRMW* curr);
  void visitAtomicCmpxchg(AtomicCmpxchg* curr);
  void visitAtomicWait(AtomicWait* curr);
  void visitAtomicNotify(AtomicNotify* curr);
  void visitAtomicFence(AtomicFence* curr);
  void visitSIMDExtract(SIMDExtract* curr);
  void visitSIMDReplace(SIMDReplace* curr);
  void visitSIMDShuffle(SIMDShuffle* curr);
  void visitSIMDTernary(SIMDTernary* curr);
  void visitSIMDShift(SIMDShift* curr);
  void visitSIMDLoad(SIMDLoad* curr);
  void visitMemoryInit(MemoryInit* curr);
  void visitDataDrop(DataDrop* curr);
  void visitMemoryCopy(MemoryCopy* curr);
  void visitMemoryFill(MemoryFill* curr);
  void visitConst(Const* curr);
  void visitUnary(Unary* curr);
  void visitBinary(Binary* curr);
  void visitSelect(Select* curr);
  void visitReturn(Return* curr);
  void visitHost(Host* curr);
  void visitTry(Try* curr);
  void visitThrow(Throw* curr);
  void visitRethrow(Rethrow* curr);
  void visitBrOnExn(BrOnExn* curr);
  void visitNop(Nop* curr);
  void visitUnreachable(Unreachable* curr);
  void visitDrop(Drop* curr);
  void visitPush(Push* curr);
  void visitPop(Pop* curr);

protected:
  Function* func = nullptr;

private:
  void emit(Expression* curr) { static_cast<SubType*>(this)->emit(curr); }
  void emitHeader() { static_cast<SubType*>(this)->emitHeader(); }
  void emitIfElse(If* curr) { static_cast<SubType*>(this)->emitIfElse(curr); }
  void emitCatch(Try* curr) { static_cast<SubType*>(this)->emitCatch(curr); }
  void emitScopeEnd(Expression* curr) {
    static_cast<SubType*>(this)->emitScopeEnd(curr);
  }
  void emitFunctionEnd() { static_cast<SubType*>(this)->emitFunctionEnd(); }
  void emitUnreachable() { static_cast<SubType*>(this)->emitUnreachable(); }
  void emitDebugLocation(Expression* curr) {
    static_cast<SubType*>(this)->emitDebugLocation(curr);
  }
  void visitPossibleBlockContents(Expression* curr);
};

template<typename SubType> void BinaryenIRWriter<SubType>::write() {
  assert(func && "BinaryenIRWriter: function is not set");
  emitHeader();
  visitPossibleBlockContents(func->body);
  emitFunctionEnd();
}

// emits a node, but if it is a block with no name, emit a list of its contents
template<typename SubType>
void BinaryenIRWriter<SubType>::visitPossibleBlockContents(Expression* curr) {
  auto* block = curr->dynCast<Block>();
  if (!block || BranchUtils::BranchSeeker::has(block, block->name)) {
    visit(curr);
    return;
  }
  for (auto* child : block->list) {
    visit(child);
  }
  if (block->type == unreachable && block->list.back()->type != unreachable) {
    // similar to in visitBlock, here we could skip emitting the block itself,
    // but must still end the 'block' (the contents, really) with an unreachable
    emitUnreachable();
  }
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visit(Expression* curr) {
  emitDebugLocation(curr);
  OverriddenVisitor<BinaryenIRWriter>::visit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitBlock(Block* curr) {
  auto visitChildren = [this](Block* curr, Index from) {
    auto& list = curr->list;
    while (from < list.size()) {
      visit(list[from++]);
    }
  };

  auto afterChildren = [this](Block* curr) {
    if (curr->type == unreachable) {
      // an unreachable block is one that cannot be exited. We cannot encode
      // this directly in wasm, where blocks must be none,i32,i64,f32,f64. Since
      // the block cannot be exited, we can emit an unreachable at the end, and
      // that will always be valid, and then the block is ok as a none
      emitUnreachable();
    }
    emitScopeEnd(curr);
    if (curr->type == unreachable) {
      // and emit an unreachable *outside* the block too, so later things can
      // pop anything
      emitUnreachable();
    }
  };

  // Handle very deeply nested blocks in the first position efficiently,
  // avoiding heavy recursion. We only start to do this if we see it will help
  // us (to avoid allocation of the vector).
  if (!curr->list.empty() && curr->list[0]->is<Block>()) {
    std::vector<Block*> parents;
    Block* child;
    while (!curr->list.empty() && (child = curr->list[0]->dynCast<Block>())) {
      parents.push_back(curr);
      emit(curr);
      curr = child;
    }
    // Emit the current block, which does not have a block as a child in the
    // first position.
    emit(curr);
    visitChildren(curr, 0);
    afterChildren(curr);
    // Finish the later parts of all the parent blocks.
    while (!parents.empty()) {
      auto* parent = parents.back();
      parents.pop_back();
      visitChildren(parent, 1);
      afterChildren(parent);
    }
    return;
  }
  // Simple case of not having a nested block in the first position.
  emit(curr);
  visitChildren(curr, 0);
  afterChildren(curr);
}

template<typename SubType> void BinaryenIRWriter<SubType>::visitIf(If* curr) {
  visit(curr->condition);
  if (curr->condition->type == unreachable) {
    // this if-else is unreachable because of the condition, i.e., the condition
    // does not exit. So don't emit the if (but do consume the condition)
    emitUnreachable();
    return;
  }
  emit(curr);
  visitPossibleBlockContents(curr->ifTrue);

  if (curr->ifFalse) {
    emitIfElse(curr);
    visitPossibleBlockContents(curr->ifFalse);
  }

  emitScopeEnd(curr);
  if (curr->type == unreachable) {
    // we already handled the case of the condition being unreachable.
    // otherwise, we may still be unreachable, if we are an if-else with both
    // sides unreachable. wasm does not allow this to be emitted directly, so we
    // must do something more. we could do better, but for now we emit an extra
    // unreachable instruction after the if, so it is not consumed itself,
    assert(curr->ifFalse);
    emitUnreachable();
  }
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitLoop(Loop* curr) {
  emit(curr);
  visitPossibleBlockContents(curr->body);
  if (curr->type == unreachable) {
    // we emitted a loop without a return type, and the body might be block
    // contents, so ensure it is not consumed
    emitUnreachable();
  }
  emitScopeEnd(curr);
  if (curr->type == unreachable) {
    // we emitted a loop without a return type, so it must not be consumed
    emitUnreachable();
  }
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitBreak(Break* curr) {
  if (curr->value) {
    visit(curr->value);
  }
  if (curr->condition) {
    visit(curr->condition);
  }
  emit(curr);
  if (curr->condition && curr->type == unreachable) {
    // a br_if is normally none or emits a value. if it is unreachable, then
    // either the condition or the value is unreachable, which is extremely
    // rare, and may require us to make the stack polymorphic (if the block we
    // branch to has a value, we may lack one as we are not a reachable branch;
    // the wasm spec on the other hand does presume the br_if emits a value of
    // the right type, even if it popped unreachable)
    emitUnreachable();
  }
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitSwitch(Switch* curr) {
  if (curr->value) {
    visit(curr->value);
  }
  visit(curr->condition);
  if (!BranchUtils::isBranchReachable(curr)) {
    // if the branch is not reachable, then it's dangerous to emit it, as wasm
    // type checking rules are different, especially in unreachable code. so
    // just don't emit that unreachable code.
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitCall(Call* curr) {
  for (auto* operand : curr->operands) {
    visit(operand);
  }

  // For non-control-flow value-returning instructions, if the type of an
  // expression is unreachable, we emit an unreachable and don't emit the
  // instruction itself. If we don't emit an unreachable, instructions that
  // follow can have a validation failure in wasm binary format. For example:
  // [unreachable] (f32.add
  // [unreachable]   (i32.eqz
  // [unreachable]     (unreachable)
  //                 )
  //                 ...
  //               )
  // This is a valid prgram in binaryen IR, because the unreachable type
  // propagates out of an expression, making both i32.eqz and f32.add
  // unreachable. But in binary format, this becomes:
  // unreachable
  // i32.eqz
  // f32.add       ;; validation failure; it takes an i32!
  // And here f32.add causes validation failure in wasm validation. So in this
  // case we add an unreachable to prevent following instructions to consume
  // the current value (here i32.eqz).
  //
  // The same applies for other expressions.
  if (curr->type == unreachable && !curr->isReturn) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitCallIndirect(CallIndirect* curr) {
  for (auto* operand : curr->operands) {
    visit(operand);
  }
  visit(curr->target);
  if (curr->type == unreachable && !curr->isReturn) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitLocalGet(LocalGet* curr) {
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitLocalSet(LocalSet* curr) {
  visit(curr->value);
  if (curr->isTee() && curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitGlobalGet(GlobalGet* curr) {
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitGlobalSet(GlobalSet* curr) {
  visit(curr->value);
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitLoad(Load* curr) {
  visit(curr->ptr);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitStore(Store* curr) {
  visit(curr->ptr);
  visit(curr->value);
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitAtomicRMW(AtomicRMW* curr) {
  visit(curr->ptr);
  visit(curr->value);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitAtomicCmpxchg(AtomicCmpxchg* curr) {
  visit(curr->ptr);
  visit(curr->expected);
  visit(curr->replacement);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitAtomicWait(AtomicWait* curr) {
  visit(curr->ptr);
  visit(curr->expected);
  visit(curr->timeout);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitAtomicNotify(AtomicNotify* curr) {
  visit(curr->ptr);
  visit(curr->notifyCount);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitAtomicFence(AtomicFence* curr) {
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitSIMDExtract(SIMDExtract* curr) {
  visit(curr->vec);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitSIMDReplace(SIMDReplace* curr) {
  visit(curr->vec);
  visit(curr->value);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitSIMDShuffle(SIMDShuffle* curr) {
  visit(curr->left);
  visit(curr->right);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitSIMDTernary(SIMDTernary* curr) {
  visit(curr->a);
  visit(curr->b);
  visit(curr->c);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitSIMDShift(SIMDShift* curr) {
  visit(curr->vec);
  visit(curr->shift);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitSIMDLoad(SIMDLoad* curr) {
  visit(curr->ptr);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitMemoryInit(MemoryInit* curr) {
  visit(curr->dest);
  visit(curr->offset);
  visit(curr->size);
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitDataDrop(DataDrop* curr) {
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitMemoryCopy(MemoryCopy* curr) {
  visit(curr->dest);
  visit(curr->source);
  visit(curr->size);
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitMemoryFill(MemoryFill* curr) {
  visit(curr->dest);
  visit(curr->value);
  visit(curr->size);
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitConst(Const* curr) {
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitUnary(Unary* curr) {
  visit(curr->value);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitBinary(Binary* curr) {
  visit(curr->left);
  visit(curr->right);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitSelect(Select* curr) {
  visit(curr->ifTrue);
  visit(curr->ifFalse);
  visit(curr->condition);
  if (curr->type == unreachable) {
    emitUnreachable();
    return;
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitReturn(Return* curr) {
  if (curr->value) {
    visit(curr->value);
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitHost(Host* curr) {
  switch (curr->op) {
    case MemorySize: {
      break;
    }
    case MemoryGrow: {
      visit(curr->operands[0]);
      break;
    }
  }
  emit(curr);
}

template<typename SubType> void BinaryenIRWriter<SubType>::visitTry(Try* curr) {
  emit(curr);
  visitPossibleBlockContents(curr->body);
  emitCatch(curr);
  visitPossibleBlockContents(curr->catchBody);
  emitScopeEnd(curr);
  if (curr->type == unreachable) {
    emitUnreachable();
  }
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitThrow(Throw* curr) {
  for (auto* operand : curr->operands) {
    visit(operand);
  }
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitRethrow(Rethrow* curr) {
  visit(curr->exnref);
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitBrOnExn(BrOnExn* curr) {
  visit(curr->exnref);
  emit(curr);
  if (curr->type == unreachable) {
    emitUnreachable();
  }
}

template<typename SubType> void BinaryenIRWriter<SubType>::visitNop(Nop* curr) {
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitUnreachable(Unreachable* curr) {
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitDrop(Drop* curr) {
  visit(curr->value);
  emit(curr);
}

template<typename SubType>
void BinaryenIRWriter<SubType>::visitPush(Push* curr) {
  // Turns into nothing in the binary format: leave the child on the stack for
  // others to use.
  visit(curr->value);
}

template<typename SubType> void BinaryenIRWriter<SubType>::visitPop(Pop* curr) {
  // Turns into nothing in the binary format: just get a value that is already
  // on the stack.
}

// Binaryen IR to binary writer
class BinaryenIRToBinaryWriter
  : public BinaryenIRWriter<BinaryenIRToBinaryWriter> {
public:
  BinaryenIRToBinaryWriter(WasmBinaryWriter& parent,
                           BufferWithRandomAccess& o,
                           Function* func = nullptr,
                           bool sourceMap = false)
    : BinaryenIRWriter<BinaryenIRToBinaryWriter>(func), parent(parent),
      writer(parent, o, func, sourceMap), sourceMap(sourceMap) {}

  void visit(Expression* curr) {
    BinaryenIRWriter<BinaryenIRToBinaryWriter>::visit(curr);
  }

  void emit(Expression* curr) { writer.visit(curr); }
  void emitHeader() {
    if (func->prologLocation.size()) {
      parent.writeDebugLocation(*func->prologLocation.begin());
    }
    writer.mapLocalsAndEmitHeader();
  }
  void emitIfElse(If* curr) { writer.emitIfElse(); }
  void emitCatch(Try* curr) { writer.emitCatch(); }
  void emitScopeEnd(Expression* curr) { writer.emitScopeEnd(); }
  void emitFunctionEnd() {
    if (func->epilogLocation.size()) {
      parent.writeDebugLocation(*func->epilogLocation.begin());
    }
    writer.emitFunctionEnd();
  }
  void emitUnreachable() { writer.emitUnreachable(); }
  void emitDebugLocation(Expression* curr) {
    if (sourceMap) {
      parent.writeDebugLocation(curr, func);
    }
  }

private:
  WasmBinaryWriter& parent;
  BinaryInstWriter writer;
  bool sourceMap = false;
};

// Binaryen IR to stack IR converter
// Queues the expressions linearly in Stack IR (SIR)
class StackIRGenerator : public BinaryenIRWriter<StackIRGenerator> {
public:
  StackIRGenerator(MixedArena& allocator, Function* func)
    : BinaryenIRWriter<StackIRGenerator>(func), allocator(allocator) {}

  void emit(Expression* curr);
  void emitScopeEnd(Expression* curr);
  void emitHeader() {}
  void emitIfElse(If* curr) {
    stackIR.push_back(makeStackInst(StackInst::IfElse, curr));
  }
  void emitCatch(Try* curr) {
    stackIR.push_back(makeStackInst(StackInst::Catch, curr));
  }
  void emitFunctionEnd() {}
  void emitUnreachable() {
    stackIR.push_back(makeStackInst(Builder(allocator).makeUnreachable()));
  }
  void emitDebugLocation(Expression* curr) {}

  StackIR& getStackIR() { return stackIR; }

private:
  StackInst* makeStackInst(StackInst::Op op, Expression* origin);
  StackInst* makeStackInst(Expression* origin) {
    return makeStackInst(StackInst::Basic, origin);
  }

  MixedArena& allocator;
  StackIR stackIR; // filled in write()
};

// Stack IR to binary writer
class StackIRToBinaryWriter {
public:
  StackIRToBinaryWriter(WasmBinaryWriter& parent,
                        BufferWithRandomAccess& o,
                        Function* func)
    : writer(parent, o, func, false /* sourceMap */), func(func) {}

  void write();

private:
  BinaryInstWriter writer;
  Function* func;
};

} // namespace wasm

#endif // wasm_stack_h