1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
/*
* Copyright 2017 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef wasm_wasm_type_h
#define wasm_wasm_type_h
#include "wasm-features.h"
#include <ostream>
#include <vector>
// TODO: At various code locations we were assuming that single types are basic
// types, but this is going to change with the introduction of the compound
// Signature, Struct and Array types that will be single but not basic. To
// prepare for this change, the following macro marks affected code locations.
#define TODO_SINGLE_COMPOUND(type) \
assert(!type.isTuple() && "Unexpected tuple type"); \
assert(!type.isCompound() && "TODO: handle compound types");
namespace wasm {
struct Tuple;
struct Signature;
struct Struct;
struct Array;
typedef std::vector<class Type> TypeList;
class Type {
// The `id` uniquely represents each type, so type equality is just a
// comparison of the ids. For basic types the `id` is just the `BasicID`
// enum value below, and for constructed types the `id` is the address of the
// canonical representation of the type, making lookups cheap for all types.
uintptr_t id;
public:
enum BasicID : uint32_t {
none,
unreachable,
i32,
i64,
f32,
f64,
v128,
funcref,
externref,
nullref,
exnref,
_last_basic_id = exnref
};
Type() = default;
// BasicID can be implicitly upgraded to Type
constexpr Type(BasicID id) : id(id){};
// But converting raw uint32_t is more dangerous, so make it explicit
explicit Type(uint64_t id) : id(id){};
// Construct tuple from a list of single types
Type(std::initializer_list<Type>);
// Construct from tuple description
explicit Type(const Tuple&);
// Construct from signature description
explicit Type(const Signature, bool nullable);
// Construct from struct description
explicit Type(const Struct&, bool nullable);
// Construct from array description
explicit Type(const Array&, bool nullable);
// Predicates
// Compound Concrete
// Type Basic │ Single│
// ╒═════════════╦═│═╤═│═╤═│═╤═│═╤═══════╕
// │ none ║ x │ │ │ │ │
// │ unreachable ║ x │ │ │ │ │
// ├─────────────╫───┼───┼───┼───┤───────┤
// │ i32 ║ x │ │ x │ x │ I │ ┐ Number
// │ i64 ║ x │ │ x │ x │ I │ │ I_nteger
// │ f32 ║ x │ │ x │ x │ F │ │ F_loat
// │ f64 ║ x │ │ x │ x │ F │ │ V_ector
// │ v128 ║ x │ │ x │ x │ V │ ┘
// ├─────────────╫───┼───┼───┼───┤───────┤
// │ funcref ║ x │ │ x │ x │ f │ ┐ Ref
// │ externref ║ x │ │ x │ x │ │ │ f_unc
// │ nullref ║ x │ │ x │ x │ │ │
// │ exnref ║ x │ │ x │ x │ │ │
// ├─────────────╫───┼───┼───┼───┤───────┤ │
// │ Signature ║ │ x │ x │ x │ f │ │
// │ Struct ║ │ x │ x │ x │ │ │
// │ Array ║ │ x │ x │ x │ │ ┘
// │ Tuple ║ │ x │ │ x │ │
// └─────────────╨───┴───┴───┴───┴───────┘
constexpr bool isBasic() const { return id <= _last_basic_id; }
constexpr bool isCompound() const { return id > _last_basic_id; }
constexpr bool isConcrete() const { return id >= i32; }
constexpr bool isInteger() const { return id == i32 || id == i64; }
constexpr bool isFloat() const { return id == f32 || id == f64; }
constexpr bool isVector() const { return id == v128; };
constexpr bool isNumber() const { return id >= i32 && id <= v128; }
bool isTuple() const;
bool isSingle() const { return isConcrete() && !isTuple(); }
bool isRef() const;
bool isNullable() const;
private:
template<bool (Type::*pred)() const> bool hasPredicate() {
for (const auto& type : *this) {
if ((type.*pred)()) {
return true;
}
}
return false;
}
public:
bool hasVector() { return hasPredicate<&Type::isVector>(); }
bool hasRef() { return hasPredicate<&Type::isRef>(); }
constexpr uint64_t getID() const { return id; }
constexpr BasicID getBasic() const {
assert(isBasic() && "Basic type expected");
return static_cast<BasicID>(id);
}
// (In)equality must be defined for both Type and BasicID because it is
// otherwise ambiguous whether to convert both this and other to int or
// convert other to Type.
bool operator==(const Type& other) const { return id == other.id; }
bool operator==(const BasicID& otherId) const { return id == otherId; }
bool operator!=(const Type& other) const { return id != other.id; }
bool operator!=(const BasicID& otherId) const { return id != otherId; }
// Order types by some notion of simplicity
bool operator<(const Type& other) const;
// Returns the type size in bytes. Only single types are supported.
unsigned getByteSize() const;
// Reinterpret an integer type to a float type with the same size and vice
// versa. Only single integer and float types are supported.
Type reinterpret() const;
// Returns the feature set required to use this type.
FeatureSet getFeatures() const;
// Returns a number type based on its size in bytes and whether it is a float
// type.
static Type get(unsigned byteSize, bool float_);
// Returns true if left is a subtype of right. Subtype includes itself.
static bool isSubType(Type left, Type right);
// Computes the least upper bound from the type lattice.
// If one of the type is unreachable, the other type becomes the result. If
// the common supertype does not exist, returns none, a poison value.
static Type getLeastUpperBound(Type a, Type b);
// Computes the least upper bound for all types in the given list.
template<typename T> static Type mergeTypes(const T& types) {
Type type = Type::unreachable;
for (auto other : types) {
type = Type::getLeastUpperBound(type, other);
}
return type;
}
std::string toString() const;
struct Iterator
: std::iterator<std::random_access_iterator_tag, Type, long, Type*, Type&> {
const Type* parent;
size_t index;
Iterator(const Type* parent, size_t index) : parent(parent), index(index) {}
bool operator==(const Iterator& other) const {
return index == other.index && parent == other.parent;
}
bool operator!=(const Iterator& other) const { return !(*this == other); }
void operator++() { index++; }
Iterator& operator+=(difference_type off) {
index += off;
return *this;
}
const Iterator operator+(difference_type off) const {
return Iterator(*this) += off;
}
difference_type operator-(const Iterator& other) {
assert(parent == other.parent);
return index - other.index;
}
const value_type& operator*() const;
};
Iterator begin() const { return Iterator(this, 0); }
Iterator end() const;
size_t size() const { return end() - begin(); }
const Type& operator[](size_t i) const;
};
// Wrapper type for formatting types as "(param i32 i64 f32)"
struct ParamType {
Type type;
ParamType(Type type) : type(type) {}
std::string toString() const;
};
// Wrapper type for formatting types as "(result i32 i64 f32)"
struct ResultType {
Type type;
ResultType(Type type) : type(type) {}
std::string toString() const;
};
struct Tuple {
TypeList types;
Tuple() : types() {}
Tuple(std::initializer_list<Type> types) : types(types) {}
Tuple(const TypeList& types) : types(types) {}
Tuple(TypeList&& types) : types(std::move(types)) {}
bool operator==(const Tuple& other) const { return types == other.types; }
bool operator!=(const Tuple& other) const { return !(*this == other); }
std::string toString() const;
};
struct Signature {
Type params;
Type results;
Signature() : params(Type::none), results(Type::none) {}
Signature(Type params, Type results) : params(params), results(results) {}
bool operator==(const Signature& other) const {
return params == other.params && results == other.results;
}
bool operator!=(const Signature& other) const { return !(*this == other); }
bool operator<(const Signature& other) const;
std::string toString() const;
};
struct Field {
Type type;
enum PackedType {
not_packed,
i8,
i16,
} packedType; // applicable iff type=i32
bool mutable_;
Field(Type type, bool mutable_ = false)
: type(type), packedType(not_packed), mutable_(mutable_) {}
Field(PackedType packedType, bool mutable_ = false)
: type(Type::i32), packedType(packedType), mutable_(mutable_) {}
constexpr bool isPacked() const {
if (packedType != not_packed) {
assert(type == Type::i32 && "unexpected type");
return true;
}
return false;
}
bool operator==(const Field& other) const {
return type == other.type && packedType == other.packedType &&
mutable_ == other.mutable_;
}
bool operator!=(const Field& other) const { return !(*this == other); }
std::string toString() const;
};
typedef std::vector<Field> FieldList;
struct Struct {
FieldList fields;
Struct(const Struct& other) : fields(other.fields) {}
Struct(const FieldList& fields) : fields(fields) {}
Struct(FieldList&& fields) : fields(std::move(fields)) {}
bool operator==(const Struct& other) const { return fields == other.fields; }
bool operator!=(const Struct& other) const { return !(*this == other); }
std::string toString() const;
};
struct Array {
Field element;
Array(const Array& other) : element(other.element) {}
Array(const Field& element) : element(element) {}
Array(Field&& element) : element(std::move(element)) {}
bool operator==(const Array& other) const { return element == other.element; }
bool operator!=(const Array& other) const { return !(*this == other); }
std::string toString() const;
};
std::ostream& operator<<(std::ostream&, Type);
std::ostream& operator<<(std::ostream&, ParamType);
std::ostream& operator<<(std::ostream&, ResultType);
std::ostream& operator<<(std::ostream&, Tuple);
std::ostream& operator<<(std::ostream&, Signature);
std::ostream& operator<<(std::ostream&, Field);
std::ostream& operator<<(std::ostream&, Struct);
std::ostream& operator<<(std::ostream&, Array);
} // namespace wasm
namespace std {
template<> class hash<wasm::Type> {
public:
size_t operator()(const wasm::Type&) const;
};
template<> class hash<wasm::Tuple> {
public:
size_t operator()(const wasm::Tuple&) const;
};
template<> class hash<wasm::Signature> {
public:
size_t operator()(const wasm::Signature&) const;
};
template<> class hash<wasm::Field> {
public:
size_t operator()(const wasm::Field&) const;
};
template<> class hash<wasm::Struct> {
public:
size_t operator()(const wasm::Struct&) const;
};
template<> class hash<wasm::Array> {
public:
size_t operator()(const wasm::Array&) const;
};
} // namespace std
#endif // wasm_wasm_type_h
|