summaryrefslogtreecommitdiff
path: root/src/wasm-type.h
blob: b48a1071328721fbc344074ecde438c37cce0cea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/*
 * Copyright 2017 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef wasm_wasm_type_h
#define wasm_wasm_type_h

#include <functional>
#include <optional>
#include <ostream>
#include <string>
#include <unordered_map>
#include <variant>
#include <vector>

#include "support/index.h"
#include "support/name.h"
#include "support/parent_index_iterator.h"
#include "wasm-features.h"

// TODO: At various code locations we were assuming that single types are basic
// types, but this is going to change with the introduction of the compound
// Signature, Struct and Array types that will be single but not basic. To
// prepare for this change, the following macro marks affected code locations.
#define TODO_SINGLE_COMPOUND(type)                                             \
  assert(!type.isTuple() && "Unexpected tuple type");                          \
  assert(type.isBasic() && "TODO: handle compound types");

namespace wasm {

// Dangerous! Frees all types and heap types that have ever been created and
// resets the type system's internal state. This is only really meant to be used
// for tests.
void destroyAllTypesForTestingPurposesOnly();

// The types defined in this file. All of them are small and typically passed by
// value except for `Tuple` and `Struct`, which may own an unbounded amount of
// data.
class Type;
class HeapType;
class RecGroup;
struct Signature;
struct Continuation;
struct Field;
struct Struct;
struct Array;

using TypeList = std::vector<Type>;
using Tuple = TypeList;

enum Nullability { NonNullable, Nullable };
enum Mutability { Immutable, Mutable };

// HeapType name information used for printing.
struct TypeNames {
  // The name of the type.
  Name name;
  // For a Struct, names of fields.
  std::unordered_map<Index, Name> fieldNames;
};

// Used to generate HeapType names.
using HeapTypeNameGenerator = std::function<TypeNames(HeapType)>;

// The type used for interning IDs in the public interfaces of Type and
// HeapType.
using TypeID = uint64_t;

enum Shareability { Shared, Unshared };

enum class HeapTypeKind {
  Basic,
  Func,
  Struct,
  Array,
  Cont,
};

class HeapType {
  // Unlike `Type`, which represents the types of values on the WebAssembly
  // stack, `HeapType` is used to describe the structures that reference types
  // refer to. HeapTypes are canonicalized and interned exactly like Types and
  // should also be passed by value.
  uintptr_t id;

public:
  // Bits 0 and 1 are used by the Type representation, so need to be left free.
  // Bit 2 determines whether the basic heap type is shared (1) or unshared (0).
  enum BasicHeapType : uint32_t {
    ext = 1 << 3,
    func = 2 << 3,
    cont = 3 << 3,
    any = 4 << 3,
    eq = 5 << 3,
    i31 = 6 << 3,
    struct_ = 7 << 3,
    array = 8 << 3,
    exn = 9 << 3,
    string = 10 << 3,
    none = 11 << 3,
    noext = 12 << 3,
    nofunc = 13 << 3,
    nocont = 14 << 3,
    noexn = 15 << 3,
  };
  static constexpr BasicHeapType _last_basic_type =
    BasicHeapType(noexn + (1 << 2));

  // BasicHeapType can be implicitly upgraded to HeapType
  constexpr HeapType(BasicHeapType id) : id(id) {}

  // But converting raw TypeID is more dangerous, so make it explicit
  explicit HeapType(TypeID id) : id(id) {}

  // Choose an arbitrary heap type as the default.
  constexpr HeapType() : HeapType(func) {}

  // Construct a HeapType referring to the single canonical HeapType for the
  // given signature. In nominal mode, this is the first HeapType created with
  // this signature.
  HeapType(Signature signature);

  HeapType(Continuation cont);

  // Create a HeapType with the given structure. In equirecursive mode, this may
  // be the same as a previous HeapType created with the same contents. In
  // nominal mode, this will be a fresh type distinct from all previously
  // created HeapTypes.
  // TODO: make these explicit to differentiate them.
  HeapType(const Struct& struct_);
  HeapType(Struct&& struct_);
  HeapType(Array array);

  HeapTypeKind getKind() const;

  constexpr bool isBasic() const { return id <= _last_basic_type; }
  bool isFunction() const {
    return isMaybeShared(func) || getKind() == HeapTypeKind::Func;
  }
  bool isData() const {
    auto kind = getKind();
    return isMaybeShared(string) || kind == HeapTypeKind::Struct ||
           kind == HeapTypeKind::Array;
  }
  bool isSignature() const { return getKind() == HeapTypeKind::Func; }
  bool isContinuation() const { return getKind() == HeapTypeKind::Cont; }
  bool isStruct() const { return getKind() == HeapTypeKind::Struct; }
  bool isArray() const { return getKind() == HeapTypeKind::Array; }
  bool isExn() const { return isMaybeShared(HeapType::exn); }
  bool isString() const { return isMaybeShared(HeapType::string); }
  bool isBottom() const;
  bool isOpen() const;
  bool isShared() const { return getShared() == Shared; }

  Shareability getShared() const;

  // Check if the type is a given basic heap type, while ignoring whether it is
  // shared or not.
  bool isMaybeShared(BasicHeapType type) const {
    return isBasic() && getBasic(Unshared) == type;
  }

  Signature getSignature() const;
  Continuation getContinuation() const;

  const Struct& getStruct() const;
  Array getArray() const;

  // If there is a nontrivial (i.e. non-basic, one that was declared by the
  // module) nominal supertype, return it, else an empty optional.
  std::optional<HeapType> getDeclaredSuperType() const;

  // As |getDeclaredSuperType|, but also handles basic types, that is, if the
  // super is a basic type, then we return it here. Declared types are returned
  // as well, just like |getDeclaredSuperType|.
  std::optional<HeapType> getSuperType() const;

  // Return the depth of this heap type in the nominal type hierarchy, i.e. the
  // number of supertypes in its supertype chain.
  size_t getDepth() const;

  // Get the bottom heap type for this heap type's hierarchy.
  BasicHeapType getUnsharedBottom() const;
  BasicHeapType getBottom() const {
    return HeapType(getUnsharedBottom()).getBasic(getShared());
  }

  // Get the top heap type for this heap type's hierarchy.
  BasicHeapType getUnsharedTop() const;
  BasicHeapType getTop() const {
    return HeapType(getUnsharedTop()).getBasic(getShared());
  }

  // Get the recursion group for this non-basic type.
  RecGroup getRecGroup() const;

  // Get the index of this non-basic type within its recursion group.
  size_t getRecGroupIndex() const;

  constexpr TypeID getID() const { return id; }

  // Get the shared or unshared version of this basic heap type.
  constexpr BasicHeapType getBasic(Shareability share) const {
    assert(isBasic());
    return BasicHeapType(share == Shared ? (id | 4) : (id & ~4));
  }

  // (In)equality must be defined for both HeapType and BasicHeapType because it
  // is otherwise ambiguous whether to convert both this and other to int or
  // convert other to HeapType.
  bool operator==(const HeapType& other) const { return id == other.id; }
  bool operator==(const BasicHeapType& other) const { return id == other; }
  bool operator!=(const HeapType& other) const { return id != other.id; }
  bool operator!=(const BasicHeapType& other) const { return id != other; }

  // Returns true if left is a subtype of right. Subtype includes itself.
  static bool isSubType(HeapType left, HeapType right);

  std::vector<Type> getTypeChildren() const;

  // Return the ordered HeapType children, looking through child Types.
  std::vector<HeapType> getHeapTypeChildren() const;

  // Similar to `getHeapTypeChildren`, but also includes the supertype if it
  // exists.
  std::vector<HeapType> getReferencedHeapTypes() const;

  // Return the LUB of two HeapTypes, which may or may not exist.
  static std::optional<HeapType> getLeastUpperBound(HeapType a, HeapType b);

  // Returns the feature set required to use this type.
  FeatureSet getFeatures() const;

  // Helper allowing the value of `print(...)` to be sent to an ostream. Stores
  // a `TypeID` because `Type` is incomplete at this point and using a reference
  // makes it less convenient to use.
  struct Printed {
    TypeID typeID;
    HeapTypeNameGenerator generateName;
  };

  // Given a function for generating HeapType names, print the definition of
  // this HeapType to `os`. `generateName` should return the same
  // name each time it is called with the same HeapType and it should return
  // different names for different types.
  Printed print(HeapTypeNameGenerator generateName) {
    return Printed{getID(), generateName};
  }

  std::string toString() const;
};

class Type {
  // The `id` uniquely represents each type, so type equality is just a
  // comparison of the ids. The basic types are packed at the bottom of the
  // expressible range, and after that tuple types are distinguished by having
  // bit 0 set. When that bit is masked off, they are pointers to the underlying
  // vectors of types. Otherwise, the type is a reference type, and is
  // represented as a heap type with bit 1 set iff the reference type is
  // nullable.
  //
  // Since `Type` is really just a single integer, it should be passed by value.
  // This is a uintptr_t rather than a TypeID (uint64_t) to save memory on
  // 32-bit platforms.
  uintptr_t id;

public:
  enum BasicType : uint32_t {
    none = 0,
    unreachable = 1,
    i32 = 2,
    i64 = 3,
    f32 = 4,
    f64 = 5,
    v128 = 6,
  };
  static constexpr BasicType _last_basic_type = v128;

  Type() : id(none) {}

  // BasicType can be implicitly upgraded to Type
  constexpr Type(BasicType id) : id(id) {}

  // But converting raw TypeID is more dangerous, so make it explicit
  explicit Type(TypeID id) : id(id) {}

  // Construct tuple from a list of single types
  Type(std::initializer_list<Type>);

  // Construct from tuple description
  Type(const Tuple&);
  Type(Tuple&&);

  // Construct from a heap type description. Also covers construction from
  // Signature, Struct or Array via implicit conversion to HeapType.
  Type(HeapType heapType, Nullability nullable)
    : Type(heapType.getID() | (nullable == Nullable ? 2 : 0)) {}

  // Predicates
  //                 Compound Concrete
  //   Type        Basic │ Single│
  // ╒═════════════╦═│═╤═│═╤═│═╤═│═╤═══════╕
  // │ none        ║ x │   │   │   │       │
  // │ unreachable ║ x │   │   │   │       │
  // ├─────────────╫───┼───┼───┼───┤───────┤
  // │ i32         ║ x │   │ x │ x │ I     │ ┐ Number
  // │ i64         ║ x │   │ x │ x │ I     │ │  I_nteger
  // │ f32         ║ x │   │ x │ x │   F   │ │  F_loat
  // │ f64         ║ x │   │ x │ x │   F   │ │  V_ector
  // │ v128        ║ x │   │ x │ x │     V │ ┘
  // ├─ Aliases ───╫───┼───┼───┼───┤───────┤
  // │ funcref     ║ x │   │ x │ x │ f  n  │ ┐ Ref
  // │ anyref      ║ x │   │ x │ x │ f? n  │ │  f_unc
  // │ eqref       ║ x │   │ x │ x │    n  │ │  n_ullable
  // │ i31ref      ║ x │   │ x │ x │    n  │ │
  // │ structref   ║ x │   │ x │ x │    n  │ │
  // │ arrayref    ║ x │   │ x │ x │    n  │ │
  // │ exnref      ║ x │   │ x │ x │    n  │ │
  // │ stringref   ║ x │   │ x │ x │    n  │ │
  // ├─ Compound ──╫───┼───┼───┼───┤───────┤ │
  // │ Ref         ║   │ x │ x │ x │ f? n? │◄┘
  // │ Tuple       ║   │ x │   │ x │       │
  // └─────────────╨───┴───┴───┴───┴───────┘
  constexpr bool isBasic() const { return id <= _last_basic_type; }
  constexpr bool isConcrete() const { return id >= i32; }
  constexpr bool isInteger() const { return id == i32 || id == i64; }
  constexpr bool isFloat() const { return id == f32 || id == f64; }
  constexpr bool isVector() const { return id == v128; };
  constexpr bool isNumber() const { return id >= i32 && id <= v128; }
  bool isSingle() const { return isConcrete() && !isTuple(); }

  // Tuples, refs, etc. are quickly handled using isBasic(), leaving the non-
  // basic case for the underlying implementation.

  // TODO: Experiment with leaving bit 0 free in basic types.
  bool isTuple() const { return !isBasic() && (id & 1); }
  const Tuple& getTuple() const {
    assert(isTuple());
    return *(Tuple*)(id & ~1);
  }

  bool isRef() const { return !isBasic() && !(id & 1); }
  bool isNullable() const { return isRef() && (id & 2); }
  bool isNonNullable() const { return isRef() && !(id & 2); }
  HeapType getHeapType() const {
    assert(isRef());
    return HeapType(id & ~2);
  }

  bool isFunction() const { return isRef() && getHeapType().isFunction(); }
  bool isSignature() const { return isRef() && getHeapType().isSignature(); }
  bool isData() const { return isRef() && getHeapType().isData(); }

  // Whether this type is only inhabited by null values.
  bool isNull() const { return isRef() && getHeapType().isBottom(); }
  bool isStruct() const { return isRef() && getHeapType().isStruct(); }
  bool isArray() const { return isRef() && getHeapType().isArray(); }
  bool isExn() const { return isRef() && getHeapType().isExn(); }
  bool isString() const { return isRef() && getHeapType().isString(); }
  bool isDefaultable() const;

  // TODO: Allow this only for reference types.
  Nullability getNullability() const {
    return isNullable() ? Nullable : NonNullable;
  }

private:
  template<bool (Type::*pred)() const> bool hasPredicate() {
    for (const auto& type : *this) {
      if ((type.*pred)()) {
        return true;
      }
    }
    return false;
  }

public:
  bool hasVector() { return hasPredicate<&Type::isVector>(); }
  bool hasRef() { return hasPredicate<&Type::isRef>(); }

  constexpr TypeID getID() const { return id; }
  constexpr BasicType getBasic() const {
    assert(isBasic() && "Basic type expected");
    return static_cast<BasicType>(id);
  }

  // (In)equality must be defined for both Type and BasicType because it is
  // otherwise ambiguous whether to convert both this and other to int or
  // convert other to Type.
  bool operator==(const Type& other) const { return id == other.id; }
  bool operator==(const BasicType& other) const { return id == other; }
  bool operator!=(const Type& other) const { return id != other.id; }
  bool operator!=(const BasicType& other) const { return id != other; }

  // Returns the type size in bytes. Only single types are supported.
  unsigned getByteSize() const;

  // Returns whether the type has a size in bytes. This is the same as whether
  // it can be stored in linear memory. Things like references do not have this
  // property, while numbers do. Tuples may or may not depending on their
  // contents.
  unsigned hasByteSize() const;

  // Reinterpret an integer type to a float type with the same size and vice
  // versa. Only single integer and float types are supported.
  Type reinterpret() const;

  // Returns the feature set required to use this type.
  FeatureSet getFeatures() const;

  // Returns a number type based on its size in bytes and whether it is a float
  // type.
  static Type get(unsigned byteSize, bool float_);

  // Returns true if left is a subtype of right. Subtype includes itself.
  static bool isSubType(Type left, Type right);

  // Return the ordered HeapType children, looking through child Types.
  std::vector<HeapType> getHeapTypeChildren();

  // Computes the least upper bound from the type lattice.
  // If one of the type is unreachable, the other type becomes the result. If
  // the common supertype does not exist, returns none, a poison value.
  static bool hasLeastUpperBound(Type a, Type b);
  static Type getLeastUpperBound(Type a, Type b);
  template<typename T> static bool hasLeastUpperBound(const T& types) {
    auto first = types.begin(), end = types.end();
    if (first == end) {
      return false;
    }
    for (auto second = std::next(first); second != end;) {
      if (!hasLeastUpperBound(*first++, *second++)) {
        return false;
      }
    }
    return true;
  }
  template<typename T> static Type getLeastUpperBound(const T& types) {
    auto it = types.begin(), end = types.end();
    if (it == end) {
      return Type::none;
    }
    Type lub = *it++;
    for (; it != end; ++it) {
      lub = getLeastUpperBound(lub, *it);
      if (lub == Type::none) {
        return Type::none;
      }
    }
    return lub;
  }

  static Type getGreatestLowerBound(Type a, Type b);

  // Helper allowing the value of `print(...)` to be sent to an ostream. Stores
  // a `TypeID` because `Type` is incomplete at this point and using a reference
  // makes it less convenient to use.
  struct Printed {
    TypeID typeID;
    HeapTypeNameGenerator generateName;
  };

  // Given a function for generating non-basic HeapType names, print this Type
  // to `os`.`generateName` should return the same name each time it is called
  // with the same HeapType and it should return different names for different
  // types.
  Printed print(HeapTypeNameGenerator generateName) {
    return Printed{getID(), generateName};
  }

  std::string toString() const;

  size_t size() const {
    return isTuple() ? getTuple().size() : size_t(id != Type::none);
  }

  struct Iterator : ParentIndexIterator<const Type*, Iterator> {
    using value_type = Type;
    using pointer = const Type*;
    using reference = const Type&;
    reference operator*() const;
  };

  Iterator begin() const { return Iterator{{this, 0}}; }
  Iterator end() const { return Iterator{{this, size()}}; }
  std::reverse_iterator<Iterator> rbegin() const {
    return std::make_reverse_iterator(end());
  }
  std::reverse_iterator<Iterator> rend() const {
    return std::make_reverse_iterator(begin());
  }
  const Type& operator[](size_t i) const { return *Iterator{{this, i}}; }
};

namespace HeapTypes {

constexpr HeapType ext = HeapType::ext;
constexpr HeapType func = HeapType::func;
constexpr HeapType cont = HeapType::cont;
constexpr HeapType any = HeapType::any;
constexpr HeapType eq = HeapType::eq;
constexpr HeapType i31 = HeapType::i31;
constexpr HeapType struct_ = HeapType::struct_;
constexpr HeapType array = HeapType::array;
constexpr HeapType exn = HeapType::exn;
constexpr HeapType string = HeapType::string;
constexpr HeapType none = HeapType::none;
constexpr HeapType noext = HeapType::noext;
constexpr HeapType nofunc = HeapType::nofunc;
constexpr HeapType nocont = HeapType::nocont;
constexpr HeapType noexn = HeapType::noexn;

} // namespace HeapTypes

// A recursion group consisting of one or more HeapTypes. HeapTypes with single
// members are encoded without using any additional memory, which is why
// `getHeapTypes` has to return a vector by value; it might have to create one
// on the fly.
class RecGroup {
  uintptr_t id;

public:
  explicit RecGroup(uintptr_t id) : id(id) {}
  constexpr TypeID getID() const { return id; }
  bool operator==(const RecGroup& other) const { return id == other.id; }
  bool operator!=(const RecGroup& other) const { return id != other.id; }
  size_t size() const;

  struct Iterator : ParentIndexIterator<const RecGroup*, Iterator> {
    using value_type = HeapType;
    using pointer = const HeapType*;
    using reference = const HeapType&;
    value_type operator*() const;
  };

  Iterator begin() const { return Iterator{{this, 0}}; }
  Iterator end() const { return Iterator{{this, size()}}; }
  HeapType operator[](size_t i) const { return *Iterator{{this, i}}; }
};

struct Signature {
  Type params;
  Type results;
  Signature() : params(Type::none), results(Type::none) {}
  Signature(Type params, Type results) : params(params), results(results) {}
  bool operator==(const Signature& other) const {
    return params == other.params && results == other.results;
  }
  bool operator!=(const Signature& other) const { return !(*this == other); }
  std::string toString() const;
};

struct Continuation {
  HeapType type;
  Continuation(HeapType type) : type(type) {}
  bool operator==(const Continuation& other) const {
    return type == other.type;
  }
  bool operator!=(const Continuation& other) const { return !(*this == other); }
  std::string toString() const;
};

struct Field {
  Type type;
  enum PackedType {
    not_packed,
    i8,
    i16,
  } packedType; // applicable iff type=i32
  Mutability mutable_;

  // Arbitrary defaults for convenience.
  Field() : type(Type::i32), packedType(not_packed), mutable_(Mutable) {}
  Field(Type type, Mutability mutable_)
    : type(type), packedType(not_packed), mutable_(mutable_) {}
  Field(PackedType packedType, Mutability mutable_)
    : type(Type::i32), packedType(packedType), mutable_(mutable_) {}

  constexpr bool isPacked() const {
    if (packedType != not_packed) {
      assert(type == Type::i32 && "unexpected type");
      return true;
    }
    return false;
  }

  bool operator==(const Field& other) const {
    return type == other.type && packedType == other.packedType &&
           mutable_ == other.mutable_;
  }
  bool operator!=(const Field& other) const { return !(*this == other); }
  std::string toString() const;

  unsigned getByteSize() const;
};

using FieldList = std::vector<Field>;

// Passed by reference rather than by value because it can own an unbounded
// amount of data.
struct Struct {
  FieldList fields;
  Struct() = default;
  Struct(const Struct& other) : fields(other.fields) {}
  Struct(const FieldList& fields) : fields(fields) {}
  Struct(FieldList&& fields) : fields(std::move(fields)) {}
  bool operator==(const Struct& other) const { return fields == other.fields; }
  bool operator!=(const Struct& other) const { return !(*this == other); }
  std::string toString() const;

  // Prevent accidental copies
  Struct& operator=(const Struct&) = delete;
  Struct& operator=(Struct&&) = default;
};

struct Array {
  Field element;
  Array() = default;
  Array(const Array& other) : element(other.element) {}
  Array(Field element) : element(element) {}
  bool operator==(const Array& other) const { return element == other.element; }
  bool operator!=(const Array& other) const { return !(*this == other); }
  std::string toString() const;

  Array& operator=(const Array& other) = default;
};

// TypeBuilder - allows for the construction of recursive types. Contains a
// table of `n` mutable HeapTypes and can construct temporary types that are
// backed by those HeapTypes, refering to them by reference. Those temporary
// types are owned by the TypeBuilder and should only be used in the
// construction of HeapTypes to insert into the TypeBuilder. Temporary types
// should never be used in the construction of normal Types, only other
// temporary types.
struct TypeBuilder {
  struct Impl;
  std::unique_ptr<Impl> impl;

  TypeBuilder(size_t n);
  TypeBuilder() : TypeBuilder(0) {}
  ~TypeBuilder();

  TypeBuilder(TypeBuilder& other) = delete;
  TypeBuilder& operator=(TypeBuilder&) = delete;

  TypeBuilder(TypeBuilder&& other);
  TypeBuilder& operator=(TypeBuilder&& other);

  // Append `n` new uninitialized HeapType slots to the end of the TypeBuilder.
  void grow(size_t n);

  // The number of HeapType slots in the TypeBuilder.
  size_t size();

  // Sets the heap type at index `i`. May only be called before `build`.
  void setHeapType(size_t i, Signature signature);
  void setHeapType(size_t i, Continuation continuation);
  void setHeapType(size_t i, const Struct& struct_);
  void setHeapType(size_t i, Struct&& struct_);
  void setHeapType(size_t i, Array array);

  // Sets the heap type at index `i` to be a copy of the given heap type with
  // its referenced HeapTypes to be replaced according to the provided mapping
  // function.
  template<typename F> void copyHeapType(size_t i, HeapType type, F map) {
    assert(!type.isBasic());
    if (auto super = type.getDeclaredSuperType()) {
      setSubType(i, map(*super));
    }
    setOpen(i, type.isOpen());
    setShared(i, type.getShared());

    auto copySingleType = [&](Type t) -> Type {
      if (t.isBasic()) {
        return t;
      }
      assert(t.isRef());
      return getTempRefType(map(t.getHeapType()), t.getNullability());
    };
    auto copyType = [&](Type t) -> Type {
      if (t.isTuple()) {
        std::vector<Type> elems;
        elems.reserve(t.size());
        for (auto elem : t) {
          elems.push_back(copySingleType(elem));
        }
        return getTempTupleType(elems);
      }
      return copySingleType(t);
    };
    switch (type.getKind()) {
      case HeapTypeKind::Func: {
        auto sig = type.getSignature();
        setHeapType(i, Signature(copyType(sig.params), copyType(sig.results)));
        return;
      }
      case HeapTypeKind::Struct: {
        const auto& struct_ = type.getStruct();
        std::vector<Field> fields;
        fields.reserve(struct_.fields.size());
        for (auto field : struct_.fields) {
          field.type = copyType(field.type);
          fields.push_back(field);
        }
        setHeapType(i, Struct(fields));
        return;
      }
      case HeapTypeKind::Array: {
        auto elem = type.getArray().element;
        elem.type = copyType(elem.type);
        // MSVC gets confused without this disambiguation.
        setHeapType(i, wasm::Array(elem));
        return;
      }
      case HeapTypeKind::Cont:
        setHeapType(i, Continuation(map(type.getContinuation().type)));
        return;
      case HeapTypeKind::Basic:
        WASM_UNREACHABLE("unexpected kind");
    }
  }

  // Gets the temporary HeapType at index `i`. This HeapType should only be used
  // to construct temporary Types using the methods below.
  HeapType getTempHeapType(size_t i);

  // Gets a temporary type or heap type for use in initializing the
  // TypeBuilder's HeapTypes. For Ref types, the HeapType may be a temporary
  // HeapType owned by this builder or a canonical HeapType.
  Type getTempTupleType(const Tuple&);
  Type getTempRefType(HeapType heapType, Nullability nullable);

  // Declare the HeapType being built at index `i` to be an immediate subtype of
  // the given HeapType.
  void setSubType(size_t i, std::optional<HeapType> super);

  // Create a new recursion group covering slots [i, i + length). Groups must
  // not overlap or go out of bounds.
  void createRecGroup(size_t i, size_t length);

  void setOpen(size_t i, bool open = true);
  void setShared(size_t i, Shareability share = Shared);

  enum class ErrorReason {
    // There is a cycle in the supertype relation.
    SelfSupertype,
    // The declared supertype of a type is invalid.
    InvalidSupertype,
    // The declared supertype is an invalid forward reference.
    ForwardSupertypeReference,
    // A child of the type is an invalid forward reference.
    ForwardChildReference,
    // A continuation reference that does not refer to a function type.
    InvalidFuncType,
    // A non-shared field of a shared heap type.
    InvalidUnsharedField,
  };

  struct Error {
    // The index of the type causing the failure.
    size_t index;
    ErrorReason reason;
  };

  struct BuildResult : std::variant<std::vector<HeapType>, Error> {
    operator bool() const {
      return bool(std::get_if<std::vector<HeapType>>(this));
    }
    const std::vector<HeapType>& operator*() const {
      return std::get<std::vector<HeapType>>(*this);
    }
    const std::vector<HeapType>* operator->() const { return &*(*this); }
    const Error* getError() const { return std::get_if<Error>(this); }
  };

  // Returns all of the newly constructed heap types. May only be called once
  // all of the heap types have been initialized with `setHeapType`. In nominal
  // mode, all of the constructed HeapTypes will be fresh and distinct. In
  // nominal mode, will also produce a fatal error if the declared subtype
  // relationships are not valid.
  BuildResult build();

  // Utility for ergonomically using operator[] instead of explicit setHeapType
  // and getTempHeapType methods.
  struct Entry {
    TypeBuilder& builder;
    size_t index;
    operator HeapType() const { return builder.getTempHeapType(index); }
    Entry& operator=(Signature signature) {
      builder.setHeapType(index, signature);
      return *this;
    }
    Entry& operator=(Continuation continuation) {
      builder.setHeapType(index, continuation);
      return *this;
    }
    Entry& operator=(const Struct& struct_) {
      builder.setHeapType(index, struct_);
      return *this;
    }
    Entry& operator=(Struct&& struct_) {
      builder.setHeapType(index, std::move(struct_));
      return *this;
    }
    Entry& operator=(Array array) {
      builder.setHeapType(index, array);
      return *this;
    }
    Entry& subTypeOf(std::optional<HeapType> other) {
      builder.setSubType(index, other);
      return *this;
    }
    Entry& setOpen(bool open = true) {
      builder.setOpen(index, open);
      return *this;
    }
    Entry& setShared(Shareability share = Shared) {
      builder.setShared(index, share);
      return *this;
    }
    template<typename F> Entry& copy(HeapType type, F map) {
      builder.copyHeapType(index, type, map);
      return *this;
    }
    Entry& copy(HeapType type) {
      return copy(type, [](HeapType t) { return t; });
    }
  };

  Entry operator[](size_t i) { return Entry{*this, i}; }

  void dump();
};

// We consider certain specific types to always be public, to allow closed-
// world to operate even if they escape. Specifically, "plain old data" types
// like array of i8 and i16, which are used to represent strings, may cross
// the boundary in Web environments.
//
// These are "ignorable as public", because we do not error on them being
// public. That is, we
//
//  1. Consider them public, so that passes that do not operate on public types
//     do not in fact operate on them, and
//  2. Are ok with them being public in the validator.
//
std::unordered_set<HeapType> getIgnorablePublicTypes();

std::ostream& operator<<(std::ostream&, Type);
std::ostream& operator<<(std::ostream&, Type::Printed);
std::ostream& operator<<(std::ostream&, HeapType);
std::ostream& operator<<(std::ostream&, HeapType::Printed);
std::ostream& operator<<(std::ostream&, Tuple);
std::ostream& operator<<(std::ostream&, Signature);
std::ostream& operator<<(std::ostream&, Continuation);
std::ostream& operator<<(std::ostream&, Field);
std::ostream& operator<<(std::ostream&, Struct);
std::ostream& operator<<(std::ostream&, Array);
std::ostream& operator<<(std::ostream&, TypeBuilder::ErrorReason);

} // namespace wasm

namespace std {

template<> class hash<wasm::Type> {
public:
  size_t operator()(const wasm::Type&) const;
};
template<> class hash<wasm::Signature> {
public:
  size_t operator()(const wasm::Signature&) const;
};
template<> class hash<wasm::Continuation> {
public:
  size_t operator()(const wasm::Continuation&) const;
};
template<> class hash<wasm::Field> {
public:
  size_t operator()(const wasm::Field&) const;
};
template<> class hash<wasm::Struct> {
public:
  size_t operator()(const wasm::Struct&) const;
};
template<> class hash<wasm::Array> {
public:
  size_t operator()(const wasm::Array&) const;
};
template<> class hash<wasm::HeapType> {
public:
  size_t operator()(const wasm::HeapType&) const;
};
template<> class hash<wasm::RecGroup> {
public:
  size_t operator()(const wasm::RecGroup&) const;
};

} // namespace std

#endif // wasm_wasm_type_h