1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
|
/*
* Copyright 2015 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// wasm.h: Define Binaryen IR, a representation for WebAssembly, with
// all core parts in one simple header file.
//
// For more overview, see README.md
//
#ifndef wasm_wasm_h
#define wasm_wasm_h
#include <algorithm>
#include <array>
#include <cassert>
#include <map>
#include <string>
#include <vector>
#include "literal.h"
#include "mixed_arena.h"
#include "support/name.h"
#include "wasm-type.h"
namespace wasm {
struct FeatureSet {
enum Feature : uint32_t {
MVP = 0,
Atomics = 1 << 0,
MutableGlobals = 1 << 1,
TruncSat = 1 << 2,
SIMD = 1 << 3,
BulkMemory = 1 << 4,
All = Atomics | MutableGlobals | TruncSat | SIMD | BulkMemory
};
FeatureSet() : features(MVP) {}
FeatureSet(uint32_t features) : features(features) {}
bool isMVP() const { return features == MVP; }
bool has(Feature f) { return (features & f) == f; }
bool hasAtomics() const { return features & Atomics; }
bool hasMutableGlobals() const { return features & MutableGlobals; }
bool hasTruncSat() const { return features & TruncSat; }
bool hasSIMD() const { return features & SIMD; }
bool hasBulkMemory() const { return features & BulkMemory; }
bool hasAll() const { return features & All; }
void makeMVP() { features = MVP; }
void set(Feature f, bool v = true) { features = v ? (features | f) : (features & ~f); }
void setAtomics(bool v = true) { set(Atomics, v); }
void setMutableGlobals(bool v = true) { set(MutableGlobals, v); }
void setTruncSat(bool v = true) { set(TruncSat, v); }
void setSIMD(bool v = true) { set(SIMD, v); }
void setBulkMemory(bool v = true) { set(BulkMemory, v); }
void setAll(bool v = true) { features = v ? All : MVP; }
bool operator<=(const FeatureSet& other) {
return !(features & ~other.features);
}
private:
uint32_t features;
};
// An index in a wasm module
typedef uint32_t Index;
// An address in linear memory. For now only wasm32
struct Address {
typedef uint32_t address_t;
address_t addr;
Address() : addr(0) {}
Address(uint64_t a) : addr(static_cast<address_t>(a)) {
assert(a <= std::numeric_limits<address_t>::max());
}
Address& operator=(uint64_t a) {
assert(a <= std::numeric_limits<address_t>::max());
addr = static_cast<address_t>(a);
return *this;
}
operator address_t() const { return addr; }
Address& operator++() { ++addr; return *this; }
};
// Operators
enum UnaryOp {
ClzInt32, ClzInt64, CtzInt32, CtzInt64, PopcntInt32, PopcntInt64, // int
NegFloat32, NegFloat64, AbsFloat32, AbsFloat64, CeilFloat32, CeilFloat64, FloorFloat32, FloorFloat64, TruncFloat32, TruncFloat64, NearestFloat32, NearestFloat64, SqrtFloat32, SqrtFloat64, // float
// relational
EqZInt32, EqZInt64,
// conversions
ExtendSInt32, ExtendUInt32, // extend i32 to i64
WrapInt64, // i64 to i32
TruncSFloat32ToInt32, TruncSFloat32ToInt64, TruncUFloat32ToInt32, TruncUFloat32ToInt64, TruncSFloat64ToInt32, TruncSFloat64ToInt64, TruncUFloat64ToInt32, TruncUFloat64ToInt64, // float to int
ReinterpretFloat32, ReinterpretFloat64, // reintepret bits to int
ConvertSInt32ToFloat32, ConvertSInt32ToFloat64, ConvertUInt32ToFloat32, ConvertUInt32ToFloat64, ConvertSInt64ToFloat32, ConvertSInt64ToFloat64, ConvertUInt64ToFloat32, ConvertUInt64ToFloat64, // int to float
PromoteFloat32, // f32 to f64
DemoteFloat64, // f64 to f32
ReinterpretInt32, ReinterpretInt64, // reinterpret bits to float
// The following sign-extention operators go along with wasm atomics support.
// Extend signed subword-sized integer. This differs from e.g. ExtendSInt32
// because the input integer is in an i64 value insetad of an i32 value.
ExtendS8Int32, ExtendS16Int32, ExtendS8Int64, ExtendS16Int64, ExtendS32Int64,
// Saturating float-to-int
TruncSatSFloat32ToInt32, TruncSatUFloat32ToInt32, TruncSatSFloat64ToInt32, TruncSatUFloat64ToInt32,
TruncSatSFloat32ToInt64, TruncSatUFloat32ToInt64, TruncSatSFloat64ToInt64, TruncSatUFloat64ToInt64,
// SIMD splats
SplatVecI8x16, SplatVecI16x8, SplatVecI32x4, SplatVecI64x2, SplatVecF32x4, SplatVecF64x2,
// SIMD arithmetic
NotVec128,
NegVecI8x16, AnyTrueVecI8x16, AllTrueVecI8x16, NegVecI16x8, AnyTrueVecI16x8, AllTrueVecI16x8,
NegVecI32x4, AnyTrueVecI32x4, AllTrueVecI32x4, NegVecI64x2, AnyTrueVecI64x2, AllTrueVecI64x2,
AbsVecF32x4, NegVecF32x4, SqrtVecF32x4, AbsVecF64x2, NegVecF64x2, SqrtVecF64x2,
TruncSatSVecF32x4ToVecI32x4, TruncSatUVecF32x4ToVecI32x4, TruncSatSVecF64x2ToVecI64x2, TruncSatUVecF64x2ToVecI64x2,
ConvertSVecI32x4ToVecF32x4, ConvertUVecI32x4ToVecF32x4, ConvertSVecI64x2ToVecF64x2, ConvertUVecI64x2ToVecF64x2,
InvalidUnary
};
enum BinaryOp {
AddInt32, SubInt32, MulInt32, // int or float
DivSInt32, DivUInt32, RemSInt32, RemUInt32, AndInt32, OrInt32, XorInt32, ShlInt32, ShrUInt32, ShrSInt32, RotLInt32, RotRInt32, // int
// relational ops
EqInt32, NeInt32, // int or float
LtSInt32, LtUInt32, LeSInt32, LeUInt32, GtSInt32, GtUInt32, GeSInt32, GeUInt32, // int
AddInt64, SubInt64, MulInt64, // int or float
DivSInt64, DivUInt64, RemSInt64, RemUInt64, AndInt64, OrInt64, XorInt64, ShlInt64, ShrUInt64, ShrSInt64, RotLInt64, RotRInt64, // int
// relational ops
EqInt64, NeInt64, // int or float
LtSInt64, LtUInt64, LeSInt64, LeUInt64, GtSInt64, GtUInt64, GeSInt64, GeUInt64, // int
AddFloat32, SubFloat32, MulFloat32, // int or float
DivFloat32, CopySignFloat32, MinFloat32, MaxFloat32, // float
// relational ops
EqFloat32, NeFloat32, // int or float
LtFloat32, LeFloat32, GtFloat32, GeFloat32, // float
AddFloat64, SubFloat64, MulFloat64, // int or float
DivFloat64, CopySignFloat64, MinFloat64, MaxFloat64, // float
// relational ops
EqFloat64, NeFloat64, // int or float
LtFloat64, LeFloat64, GtFloat64, GeFloat64, // float
// SIMD relational ops (return vectors)
EqVecI8x16, NeVecI8x16, LtSVecI8x16, LtUVecI8x16, GtSVecI8x16, GtUVecI8x16, LeSVecI8x16, LeUVecI8x16, GeSVecI8x16, GeUVecI8x16,
EqVecI16x8, NeVecI16x8, LtSVecI16x8, LtUVecI16x8, GtSVecI16x8, GtUVecI16x8, LeSVecI16x8, LeUVecI16x8, GeSVecI16x8, GeUVecI16x8,
EqVecI32x4, NeVecI32x4, LtSVecI32x4, LtUVecI32x4, GtSVecI32x4, GtUVecI32x4, LeSVecI32x4, LeUVecI32x4, GeSVecI32x4, GeUVecI32x4,
EqVecF32x4, NeVecF32x4, LtVecF32x4, GtVecF32x4, LeVecF32x4, GeVecF32x4,
EqVecF64x2, NeVecF64x2, LtVecF64x2, GtVecF64x2, LeVecF64x2, GeVecF64x2,
// SIMD arithmetic
AndVec128, OrVec128, XorVec128,
AddVecI8x16, AddSatSVecI8x16, AddSatUVecI8x16, SubVecI8x16, SubSatSVecI8x16, SubSatUVecI8x16, MulVecI8x16,
AddVecI16x8, AddSatSVecI16x8, AddSatUVecI16x8, SubVecI16x8, SubSatSVecI16x8, SubSatUVecI16x8, MulVecI16x8,
AddVecI32x4, SubVecI32x4, MulVecI32x4, AddVecI64x2, SubVecI64x2,
AddVecF32x4, SubVecF32x4, MulVecF32x4, DivVecF32x4, MinVecF32x4, MaxVecF32x4,
AddVecF64x2, SubVecF64x2, MulVecF64x2, DivVecF64x2, MinVecF64x2, MaxVecF64x2,
InvalidBinary
};
enum HostOp {
CurrentMemory, GrowMemory
};
enum AtomicRMWOp {
Add, Sub, And, Or, Xor, Xchg
};
enum SIMDExtractOp {
ExtractLaneSVecI8x16, ExtractLaneUVecI8x16, ExtractLaneSVecI16x8, ExtractLaneUVecI16x8,
ExtractLaneVecI32x4, ExtractLaneVecI64x2, ExtractLaneVecF32x4, ExtractLaneVecF64x2
};
enum SIMDReplaceOp {
ReplaceLaneVecI8x16, ReplaceLaneVecI16x8, ReplaceLaneVecI32x4, ReplaceLaneVecI64x2, ReplaceLaneVecF32x4, ReplaceLaneVecF64x2
};
enum SIMDShiftOp {
ShlVecI8x16, ShrSVecI8x16, ShrUVecI8x16, ShlVecI16x8, ShrSVecI16x8, ShrUVecI16x8,
ShlVecI32x4, ShrSVecI32x4, ShrUVecI32x4, ShlVecI64x2, ShrSVecI64x2, ShrUVecI64x2
};
//
// Expressions
//
// Note that little is provided in terms of constructors for these. The rationale
// is that writing new Something(a, b, c, d, e) is not the clearest, and it would
// be better to write new Something(name=a, leftOperand=b... etc., but C++
// lacks named operands, so in asm2wasm etc. you will see things like
// auto x = new Something();
// x->name = a;
// x->leftOperand = b;
// ..
// which is less compact but less ambiguous. See wasm-builder.h for a more
// friendly API for building nodes.
//
// Most nodes have no need of internal allocation, and when arena-allocated
// they drop the provided arena on the floor. You can create random instances
// of those that are not in an arena without issue. However, the nodes that
// have internal allocation will need an allocator provided to them in order
// to be constructed.
class Expression {
public:
enum Id {
InvalidId = 0,
BlockId,
IfId,
LoopId,
BreakId,
SwitchId,
CallId,
CallIndirectId,
GetLocalId,
SetLocalId,
GetGlobalId,
SetGlobalId,
LoadId,
StoreId,
ConstId,
UnaryId,
BinaryId,
SelectId,
DropId,
ReturnId,
HostId,
NopId,
UnreachableId,
AtomicRMWId,
AtomicCmpxchgId,
AtomicWaitId,
AtomicWakeId,
SIMDExtractId,
SIMDReplaceId,
SIMDShuffleId,
SIMDBitselectId,
SIMDShiftId,
MemoryInitId,
DataDropId,
MemoryCopyId,
MemoryFillId,
NumExpressionIds
};
Id _id;
// the type of the expression: its *output*, not necessarily its input(s)
Type type = none;
Expression(Id id) : _id(id) {}
void finalize() {}
template<class T>
bool is() {
return int(_id) == int(T::SpecificId);
}
template<class T>
T* dynCast() {
return int(_id) == int(T::SpecificId) ? (T*)this : nullptr;
}
template<class T>
T* cast() {
assert(int(_id) == int(T::SpecificId));
return (T*)this;
}
};
const char* getExpressionName(Expression* curr);
typedef ArenaVector<Expression*> ExpressionList;
template<Expression::Id SID>
class SpecificExpression : public Expression {
public:
enum {
SpecificId = SID // compile-time access to the type for the class
};
SpecificExpression() : Expression(SID) {}
};
class Nop : public SpecificExpression<Expression::NopId> {
public:
Nop() = default;
Nop(MixedArena& allocator) {}
};
class Block : public SpecificExpression<Expression::BlockId> {
public:
Block(MixedArena& allocator) : list(allocator) {}
Name name;
ExpressionList list;
// set the type purely based on its contents. this scans the block, so it is not fast.
void finalize();
// set the type given you know its type, which is the case when parsing
// s-expression or binary, as explicit types are given. the only additional work
// this does is to set the type to unreachable in the cases that is needed
// (which may require scanning the block)
void finalize(Type type_);
// set the type given you know its type, and you know if there is a break to this
// block. this avoids the need to scan the contents of the block in the case that
// it might be unreachable, so it is recommended if you already know the type
// and breakability anyhow.
void finalize(Type type_, bool hasBreak);
};
class If : public SpecificExpression<Expression::IfId> {
public:
If() : ifFalse(nullptr) {}
If(MixedArena& allocator) : If() {}
Expression* condition;
Expression* ifTrue;
Expression* ifFalse;
// set the type given you know its type, which is the case when parsing
// s-expression or binary, as explicit types are given. the only additional work
// this does is to set the type to unreachable in the cases that is needed.
void finalize(Type type_);
// set the type purely based on its contents.
void finalize();
};
class Loop : public SpecificExpression<Expression::LoopId> {
public:
Loop() = default;
Loop(MixedArena& allocator) {}
Name name;
Expression* body;
// set the type given you know its type, which is the case when parsing
// s-expression or binary, as explicit types are given. the only additional work
// this does is to set the type to unreachable in the cases that is needed.
void finalize(Type type_);
// set the type purely based on its contents.
void finalize();
};
class Break : public SpecificExpression<Expression::BreakId> {
public:
Break() : value(nullptr), condition(nullptr) {}
Break(MixedArena& allocator) : Break() {
type = unreachable;
}
Name name;
Expression* value;
Expression* condition;
void finalize();
};
class Switch : public SpecificExpression<Expression::SwitchId> {
public:
Switch(MixedArena& allocator) : targets(allocator) {
type = unreachable;
}
ArenaVector<Name> targets;
Name default_;
Expression* condition = nullptr;
Expression* value = nullptr;
void finalize();
};
class Call : public SpecificExpression<Expression::CallId> {
public:
Call(MixedArena& allocator) : operands(allocator) {}
ExpressionList operands;
Name target;
void finalize();
};
class FunctionType {
public:
Name name;
Type result = none;
std::vector<Type> params;
FunctionType() = default;
bool structuralComparison(FunctionType& b);
bool operator==(FunctionType& b);
bool operator!=(FunctionType& b);
};
class CallIndirect : public SpecificExpression<Expression::CallIndirectId> {
public:
CallIndirect(MixedArena& allocator) : operands(allocator) {}
ExpressionList operands;
Name fullType;
Expression* target;
void finalize();
};
class GetLocal : public SpecificExpression<Expression::GetLocalId> {
public:
GetLocal() = default;
GetLocal(MixedArena& allocator) {}
Index index;
};
class SetLocal : public SpecificExpression<Expression::SetLocalId> {
public:
SetLocal() = default;
SetLocal(MixedArena& allocator) {}
void finalize();
Index index;
Expression* value;
bool isTee();
void setTee(bool is);
};
class GetGlobal : public SpecificExpression<Expression::GetGlobalId> {
public:
GetGlobal() = default;
GetGlobal(MixedArena& allocator) {}
Name name;
};
class SetGlobal : public SpecificExpression<Expression::SetGlobalId> {
public:
SetGlobal() = default;
SetGlobal(MixedArena& allocator) {}
Name name;
Expression* value;
void finalize();
};
class Load : public SpecificExpression<Expression::LoadId> {
public:
Load() = default;
Load(MixedArena& allocator) {}
uint8_t bytes;
bool signed_;
Address offset;
Address align;
bool isAtomic;
Expression* ptr;
// type must be set during creation, cannot be inferred
void finalize();
};
class Store : public SpecificExpression<Expression::StoreId> {
public:
Store() = default;
Store(MixedArena& allocator) : Store() {}
uint8_t bytes;
Address offset;
Address align;
bool isAtomic;
Expression* ptr;
Expression* value;
Type valueType;
void finalize();
};
class AtomicRMW : public SpecificExpression<Expression::AtomicRMWId> {
public:
AtomicRMW() = default;
AtomicRMW(MixedArena& allocator) : AtomicRMW() {}
AtomicRMWOp op;
uint8_t bytes;
Address offset;
Expression* ptr;
Expression* value;
void finalize();
};
class AtomicCmpxchg : public SpecificExpression<Expression::AtomicCmpxchgId> {
public:
AtomicCmpxchg() = default;
AtomicCmpxchg(MixedArena& allocator) : AtomicCmpxchg() {}
uint8_t bytes;
Address offset;
Expression* ptr;
Expression* expected;
Expression* replacement;
void finalize();
};
class AtomicWait : public SpecificExpression<Expression::AtomicWaitId> {
public:
AtomicWait() = default;
AtomicWait(MixedArena& allocator) : AtomicWait() {}
Address offset;
Expression* ptr;
Expression* expected;
Expression* timeout;
Type expectedType;
void finalize();
};
class AtomicWake : public SpecificExpression<Expression::AtomicWakeId> {
public:
AtomicWake() = default;
AtomicWake(MixedArena& allocator) : AtomicWake() {}
Address offset;
Expression* ptr;
Expression* wakeCount;
void finalize();
};
class SIMDExtract : public SpecificExpression<Expression::SIMDExtractId> {
public:
SIMDExtract() = default;
SIMDExtract(MixedArena& allocator) : SIMDExtract() {}
SIMDExtractOp op;
Expression* vec;
uint8_t index;
void finalize();
};
class SIMDReplace : public SpecificExpression<Expression::SIMDReplaceId> {
public:
SIMDReplace() = default;
SIMDReplace(MixedArena& allocator) : SIMDReplace() {}
SIMDReplaceOp op;
Expression* vec;
uint8_t index;
Expression* value;
void finalize();
};
class SIMDShuffle : public SpecificExpression<Expression::SIMDShuffleId> {
public:
SIMDShuffle() = default;
SIMDShuffle(MixedArena& allocator) : SIMDShuffle() {}
Expression* left;
Expression* right;
std::array<uint8_t, 16> mask;
void finalize();
};
class SIMDBitselect : public SpecificExpression<Expression::SIMDBitselectId> {
public:
SIMDBitselect() = default;
SIMDBitselect(MixedArena& allocator) : SIMDBitselect() {}
Expression* left;
Expression* right;
Expression* cond;
void finalize();
};
class SIMDShift : public SpecificExpression<Expression::SIMDShiftId> {
public:
SIMDShift() = default;
SIMDShift(MixedArena& allocator) : SIMDShift() {}
SIMDShiftOp op;
Expression* vec;
Expression* shift;
void finalize();
};
class MemoryInit : public SpecificExpression<Expression::MemoryInitId> {
public:
MemoryInit() = default;
MemoryInit(MixedArena& allocator) : MemoryInit() {}
Index segment;
Expression* dest;
Expression* offset;
Expression* size;
void finalize();
};
class DataDrop : public SpecificExpression<Expression::DataDropId> {
public:
DataDrop() = default;
DataDrop(MixedArena& allocator) : DataDrop() {}
Index segment;
void finalize();
};
class MemoryCopy : public SpecificExpression<Expression::MemoryCopyId> {
public:
MemoryCopy() = default;
MemoryCopy(MixedArena& allocator) : MemoryCopy() {}
Expression* dest;
Expression* source;
Expression* size;
void finalize();
};
class MemoryFill : public SpecificExpression<Expression::MemoryFillId> {
public:
MemoryFill() = default;
MemoryFill(MixedArena& allocator) : MemoryFill() {}
Expression* dest;
Expression* value;
Expression* size;
void finalize();
};
class Const : public SpecificExpression<Expression::ConstId> {
public:
Const() = default;
Const(MixedArena& allocator) {}
Literal value;
Const* set(Literal value_);
void finalize();
};
class Unary : public SpecificExpression<Expression::UnaryId> {
public:
Unary() = default;
Unary(MixedArena& allocator) {}
UnaryOp op;
Expression* value;
bool isRelational();
void finalize();
};
class Binary : public SpecificExpression<Expression::BinaryId> {
public:
Binary() = default;
Binary(MixedArena& allocator) {}
BinaryOp op;
Expression* left;
Expression* right;
// the type is always the type of the operands,
// except for relationals
bool isRelational();
void finalize();
};
class Select : public SpecificExpression<Expression::SelectId> {
public:
Select() = default;
Select(MixedArena& allocator) {}
Expression* ifTrue;
Expression* ifFalse;
Expression* condition;
void finalize();
};
class Drop : public SpecificExpression<Expression::DropId> {
public:
Drop() = default;
Drop(MixedArena& allocator) {}
Expression* value;
void finalize();
};
class Return : public SpecificExpression<Expression::ReturnId> {
public:
Return() {
type = unreachable;
}
Return(MixedArena& allocator) : Return() {}
Expression* value = nullptr;
};
class Host : public SpecificExpression<Expression::HostId> {
public:
Host(MixedArena& allocator) : operands(allocator) {}
HostOp op;
Name nameOperand;
ExpressionList operands;
void finalize();
};
class Unreachable : public SpecificExpression<Expression::UnreachableId> {
public:
Unreachable() {
type = unreachable;
}
Unreachable(MixedArena& allocator) : Unreachable() {}
};
// Globals
struct Importable {
// If these are set, then this is an import, as module.base
Name module, base;
bool imported() {
return module.is();
}
};
// Forward declarations of Stack IR, as functions can contain it, see
// the stackIR property.
// Stack IR is a secondary IR to the main IR defined in this file (Binaryen
// IR). See wasm-stack.h.
class StackInst;
typedef std::vector<StackInst*> StackIR;
class Function : public Importable {
public:
Name name;
Type result = none;
std::vector<Type> params; // function locals are
std::vector<Type> vars; // params plus vars
Name type; // if null, it is implicit in params and result
// The body of the function
Expression* body = nullptr;
// If present, this stack IR was generated from the main Binaryen IR body,
// and possibly optimized. If it is present when writing to wasm binary,
// it will be emitted instead of the main Binaryen IR.
//
// Note that no special care is taken to synchronize the two IRs - if you
// emit stack IR and then optimize the main IR, you need to recompute the
// stack IR. The Pass system will throw away Stack IR if a pass is run
// that declares it may modify Binaryen IR.
std::unique_ptr<StackIR> stackIR;
// local names. these are optional.
std::map<Index, Name> localNames;
std::map<Name, Index> localIndices;
struct DebugLocation {
uint32_t fileIndex, lineNumber, columnNumber;
bool operator==(const DebugLocation& other) const { return fileIndex == other.fileIndex && lineNumber == other.lineNumber && columnNumber == other.columnNumber; }
bool operator!=(const DebugLocation& other) const { return !(*this == other); }
bool operator<(const DebugLocation& other) const {
return fileIndex != other.fileIndex ? fileIndex < other.fileIndex :
lineNumber != other.lineNumber ? lineNumber < other.lineNumber : columnNumber < other.columnNumber;
}
};
std::unordered_map<Expression*, DebugLocation> debugLocations;
std::set<DebugLocation> prologLocation;
std::set<DebugLocation> epilogLocation;
size_t getNumParams();
size_t getNumVars();
size_t getNumLocals();
bool isParam(Index index);
bool isVar(Index index);
Name getLocalName(Index index);
Index getLocalIndex(Name name);
Index getVarIndexBase();
Type getLocalType(Index index);
Name getLocalNameOrDefault(Index index);
Name getLocalNameOrGeneric(Index index);
bool hasLocalName(Index index) const;
void clearNames();
void clearDebugInfo();
};
// The kind of an import or export.
enum class ExternalKind {
Function = 0,
Table = 1,
Memory = 2,
Global = 3,
Invalid = -1
};
class Export {
public:
Name name; // exported name - note that this is the key, as the internal name is non-unique (can have multiple exports for an internal, also over kinds)
Name value; // internal name
ExternalKind kind;
};
class Table : public Importable {
public:
static const Address::address_t kPageSize = 1;
static const Index kUnlimitedSize = Index(-1);
// In wasm32, the maximum table size is limited by a 32-bit pointer: 4GB
static const Index kMaxSize = Index(-1);
struct Segment {
Expression* offset;
std::vector<Name> data;
Segment() = default;
Segment(Expression* offset) : offset(offset) {}
Segment(Expression* offset, std::vector<Name>& init) : offset(offset) {
data.swap(init);
}
};
// Currently the wasm object always 'has' one Table. It 'exists' if it has been defined or imported.
// The table can exist but be empty and have no defined initial or max size.
bool exists = false;
Name name;
Address initial = 0;
Address max = kMaxSize;
std::vector<Segment> segments;
Table() {
name = Name::fromInt(0);
}
bool hasMax() { return max != kUnlimitedSize; }
};
class Memory : public Importable {
public:
static const Address::address_t kPageSize = 64 * 1024;
static const Address::address_t kUnlimitedSize = Address::address_t(-1);
// In wasm32, the maximum memory size is limited by a 32-bit pointer: 4GB
static const Address::address_t kMaxSize = (uint64_t(4) * 1024 * 1024 * 1024) / kPageSize;
static const Address::address_t kPageMask = ~(kPageSize - 1);
struct Segment {
Expression* offset;
std::vector<char> data; // TODO: optimize
Segment() = default;
Segment(Expression* offset) : offset(offset) {}
Segment(Expression* offset, const char* init, Address size) : offset(offset) {
data.resize(size);
std::copy_n(init, size, data.begin());
}
Segment(Expression* offset, std::vector<char>& init) : offset(offset) {
data.swap(init);
}
};
bool exists = false;
Name name;
Address initial = 0; // sizes are in pages
Address max = kMaxSize;
std::vector<Segment> segments;
// See comment in Table.
bool shared = false;
Memory() {
name = Name::fromInt(0);
}
bool hasMax() { return max != kUnlimitedSize; }
};
class Global : public Importable {
public:
Name name;
Type type;
Expression* init;
bool mutable_ = false;
};
// "Opaque" data, not part of the core wasm spec, that is held in binaries.
// May be parsed/handled by utility code elsewhere, but not in wasm.h
class UserSection {
public:
std::string name;
std::vector<char> data;
};
class Module {
public:
// wasm contents (generally you shouldn't access these from outside, except maybe for iterating; use add*() and the get() functions)
std::vector<std::unique_ptr<FunctionType>> functionTypes;
std::vector<std::unique_ptr<Export>> exports;
std::vector<std::unique_ptr<Function>> functions;
std::vector<std::unique_ptr<Global>> globals;
Table table;
Memory memory;
Name start;
std::vector<UserSection> userSections;
std::vector<std::string> debugInfoFileNames;
MixedArena allocator;
private:
// TODO: add a build option where Names are just indices, and then these methods are not needed
std::map<Name, FunctionType*> functionTypesMap;
std::map<Name, Export*> exportsMap; // exports map is by the *exported* name, which is unique
std::map<Name, Function*> functionsMap;
std::map<Name, Global*> globalsMap;
public:
Module() = default;;
FunctionType* getFunctionType(Name name);
Export* getExport(Name name);
Function* getFunction(Name name);
Global* getGlobal(Name name);
FunctionType* getFunctionTypeOrNull(Name name);
Export* getExportOrNull(Name name);
Function* getFunctionOrNull(Name name);
Global* getGlobalOrNull(Name name);
FunctionType* addFunctionType(std::unique_ptr<FunctionType> curr);
void addExport(Export* curr);
void addFunction(Function* curr);
void addFunction(std::unique_ptr<Function> curr);
void addGlobal(Global* curr);
void addStart(const Name& s);
void removeFunctionType(Name name);
void removeExport(Name name);
void removeFunction(Name name);
void removeGlobal(Name name);
void updateMaps();
void clearDebugInfo();
};
} // namespace wasm
namespace std {
template<> struct hash<wasm::Address> {
size_t operator()(const wasm::Address a) const {
return std::hash<wasm::Address::address_t>()(a.addr);
}
};
}
#endif // wasm_wasm_h
|