summaryrefslogtreecommitdiff
path: root/src/wasm/wasm-ir-builder.cpp
blob: 4b0342410728d5be72b6ba045a66e56b8069c190 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
/*
 * Copyright 2023 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <cassert>

#include "ir/child-typer.h"
#include "ir/eh-utils.h"
#include "ir/names.h"
#include "ir/properties.h"
#include "ir/utils.h"
#include "wasm-ir-builder.h"

#define IR_BUILDER_DEBUG 0

#if IR_BUILDER_DEBUG
#define DBG(statement) statement
#else
#define DBG(statement)
#endif

using namespace std::string_literals;

namespace wasm {

namespace {

Result<> validateTypeAnnotation(HeapType type, Expression* child) {
  if (child->type == Type::unreachable) {
    return Ok{};
  }
  if (!child->type.isRef() ||
      !HeapType::isSubType(child->type.getHeapType(), type)) {
    return Err{"invalid reference type on stack"};
  }
  return Ok{};
}

} // anonymous namespace

Result<Index> IRBuilder::addScratchLocal(Type type) {
  if (!func) {
    return Err{"scratch local required, but there is no function context"};
  }
  Name name = Names::getValidLocalName(*func, "scratch");
  return Builder::addVar(func, name, type);
}

MaybeResult<IRBuilder::HoistedVal> IRBuilder::hoistLastValue() {
  auto& stack = getScope().exprStack;
  int index = stack.size() - 1;
  for (; index >= 0; --index) {
    if (stack[index]->type != Type::none) {
      break;
    }
  }
  if (index < 0) {
    // There is no value-producing or unreachable expression.
    return {};
  }
  if (unsigned(index) == stack.size() - 1) {
    // Value-producing expression already on top of the stack.
    return HoistedVal{Index(index), nullptr};
  }
  auto*& expr = stack[index];
  auto type = expr->type;
  if (type == Type::unreachable) {
    // Make sure the top of the stack also has an unreachable expression.
    if (stack.back()->type != Type::unreachable) {
      push(builder.makeUnreachable());
    }
    return HoistedVal{Index(index), nullptr};
  }
  // Hoist with a scratch local.
  auto scratchIdx = addScratchLocal(type);
  CHECK_ERR(scratchIdx);
  expr = builder.makeLocalSet(*scratchIdx, expr);
  auto* get = builder.makeLocalGet(*scratchIdx, type);
  push(get);
  return HoistedVal{Index(index), get};
}

Result<> IRBuilder::packageHoistedValue(const HoistedVal& hoisted,
                                        size_t sizeHint) {
  auto& scope = getScope();
  assert(!scope.exprStack.empty());

  auto packageAsBlock = [&](Type type) {
    // Create a block containing the producer of the hoisted value, the final
    // get of the hoisted value, and everything in between. Record the fact that
    // we are synthesizing a block to help us determine later whether we need to
    // run the nested pop fixup.
    scopeStack[0].noteSyntheticBlock();
    std::vector<Expression*> exprs(scope.exprStack.begin() + hoisted.valIndex,
                                   scope.exprStack.end());
    auto* block = builder.makeBlock(exprs, type);
    scope.exprStack.resize(hoisted.valIndex);
    push(block);
  };

  auto type = scope.exprStack.back()->type;

  if (type.size() == sizeHint || type.size() <= 1) {
    if (hoisted.get) {
      packageAsBlock(type);
    }
    return Ok{};
  }

  // We need to break up the hoisted tuple. Create and push an expression
  // setting the tuple to a local and returning its first element, then push
  // additional gets of each of its subsequent elements. Reuse the scratch local
  // we used for hoisting, if it exists.
  Index scratchIdx;
  if (hoisted.get) {
    // Update the get on top of the stack to just return the first element.
    scope.exprStack.back() = builder.makeTupleExtract(hoisted.get, 0);
    packageAsBlock(type[0]);
    scratchIdx = hoisted.get->index;
  } else {
    auto scratch = addScratchLocal(type);
    CHECK_ERR(scratch);
    scope.exprStack.back() = builder.makeTupleExtract(
      builder.makeLocalTee(*scratch, scope.exprStack.back(), type), 0);
    scratchIdx = *scratch;
  }
  for (Index i = 1, size = type.size(); i < size; ++i) {
    push(builder.makeTupleExtract(builder.makeLocalGet(scratchIdx, type), i));
  }
  return Ok{};
}

void IRBuilder::push(Expression* expr) {
  auto& scope = getScope();
  if (expr->type == Type::unreachable) {
    scope.unreachable = true;
  }
  scope.exprStack.push_back(expr);

  applyDebugLoc(expr);
  if (binaryPos && func && lastBinaryPos != *binaryPos) {
    func->expressionLocations[expr] =
      BinaryLocations::Span{BinaryLocation(lastBinaryPos - codeSectionOffset),
                            BinaryLocation(*binaryPos - codeSectionOffset)};
    lastBinaryPos = *binaryPos;
  }

  DBG(std::cerr << "After pushing " << ShallowExpression{expr} << ":\n");
  DBG(dump());
}

Result<Expression*> IRBuilder::build() {
  if (scopeStack.empty()) {
    return builder.makeBlock();
  }
  if (scopeStack.size() > 1 || !scopeStack.back().isNone()) {
    return Err{"unfinished block context"};
  }
  if (scopeStack.back().exprStack.size() > 1) {
    return Err{"unused expressions without block context"};
  }
  assert(scopeStack.back().exprStack.size() == 1);
  auto* expr = scopeStack.back().exprStack.back();
  scopeStack.clear();
  labelDepths.clear();
  return expr;
}

void IRBuilder::setDebugLocation(
  const std::optional<Function::DebugLocation>& loc) {
  if (loc) {
    DBG(std::cerr << "setting debugloc " << loc->fileIndex << ":"
                  << loc->lineNumber << ":" << loc->columnNumber << "\n";);
  } else {
    DBG(std::cerr << "setting debugloc to none\n";);
  }
  if (loc) {
    debugLoc = *loc;
  } else {
    debugLoc = NoDebug();
  }
}

void IRBuilder::applyDebugLoc(Expression* expr) {
  if (!std::get_if<CanReceiveDebug>(&debugLoc)) {
    if (func) {
      if (auto* loc = std::get_if<Function::DebugLocation>(&debugLoc)) {
        DBG(std::cerr << "applying debugloc " << loc->fileIndex << ":"
                      << loc->lineNumber << ":" << loc->columnNumber
                      << " to expression " << ShallowExpression{expr} << "\n");
        func->debugLocations[expr] = *loc;
      } else {
        assert(std::get_if<NoDebug>(&debugLoc));
        DBG(std::cerr << "applying debugloc to expression "
                      << ShallowExpression{expr} << "\n");
        func->debugLocations[expr] = std::nullopt;
      }
    }
    debugLoc = CanReceiveDebug();
  }
}

void IRBuilder::dump() {
#if IR_BUILDER_DEBUG
  std::cerr << "Scope stack";
  if (func) {
    std::cerr << " in function $" << func->name;
  }
  std::cerr << ":\n";

  for (auto& scope : scopeStack) {
    std::cerr << "  scope ";
    if (scope.isNone()) {
      std::cerr << "none";
    } else if (auto* f = scope.getFunction()) {
      std::cerr << "func " << f->name;
    } else if (scope.getBlock()) {
      std::cerr << "block";
    } else if (scope.getIf()) {
      std::cerr << "if";
    } else if (scope.getElse()) {
      std::cerr << "else";
    } else if (scope.getLoop()) {
      std::cerr << "loop";
    } else if (auto* tryy = scope.getTry()) {
      std::cerr << "try";
      if (tryy->name) {
        std::cerr << " " << tryy->name;
      }
    } else if (auto* tryy = scope.getCatch()) {
      std::cerr << "catch";
      if (tryy->name) {
        std::cerr << " " << tryy->name;
      }
    } else if (auto* tryy = scope.getCatchAll()) {
      std::cerr << "catch_all";
      if (tryy->name) {
        std::cerr << " " << tryy->name;
      }
    } else {
      WASM_UNREACHABLE("unexpected scope");
    }

    if (auto name = scope.getOriginalLabel()) {
      std::cerr << " (original label: " << name << ")";
    }

    if (scope.label) {
      std::cerr << " (label: " << scope.label << ")";
    }

    if (scope.branchLabel) {
      std::cerr << " (branch label: " << scope.branchLabel << ")";
    }

    if (scope.unreachable) {
      std::cerr << " (unreachable)";
    }

    std::cerr << ":\n";

    for (auto* expr : scope.exprStack) {
      std::cerr << "    " << ShallowExpression{expr} << "\n";
    }
  }
#endif // IR_BUILDER_DEBUG
}

struct IRBuilder::ChildPopper
  : UnifiedExpressionVisitor<ChildPopper, Result<>> {
  struct Subtype {
    Type bound;
  };

  struct AnyType {};

  struct AnyReference {};

  struct AnyTuple {
    size_t arity;
  };

  struct Constraint : std::variant<Subtype, AnyType, AnyReference, AnyTuple> {
    std::optional<Type> getSubtype() const {
      if (auto* subtype = std::get_if<Subtype>(this)) {
        return subtype->bound;
      }
      return std::nullopt;
    }
    bool isAnyType() const { return std::get_if<AnyType>(this); }
    bool isAnyReference() const { return std::get_if<AnyReference>(this); }
    std::optional<size_t> getAnyTuple() const {
      if (auto* tuple = std::get_if<AnyTuple>(this)) {
        return tuple->arity;
      }
      return std::nullopt;
    }
    size_t size() const {
      if (auto type = getSubtype()) {
        return type->size();
      }
      if (auto arity = getAnyTuple()) {
        return *arity;
      }
      return 1;
    }
    Constraint operator[](size_t i) const {
      if (auto type = getSubtype()) {
        return {Subtype{(*type)[i]}};
      }
      if (getAnyTuple()) {
        return {AnyType{}};
      }
      return *this;
    }
  };

  struct Child {
    Expression** childp;
    Constraint constraint;
  };

  struct ConstraintCollector : ChildTyper<ConstraintCollector> {
    IRBuilder& builder;
    std::vector<Child>& children;

    ConstraintCollector(IRBuilder& builder, std::vector<Child>& children)
      : ChildTyper(builder.wasm, builder.func), builder(builder),
        children(children) {}

    void noteSubtype(Expression** childp, Type type) {
      children.push_back({childp, {Subtype{type}}});
    }

    void noteAnyType(Expression** childp) {
      children.push_back({childp, {AnyType{}}});
    }

    void noteAnyReferenceType(Expression** childp) {
      children.push_back({childp, {AnyReference{}}});
    }

    void noteAnyTupleType(Expression** childp, size_t arity) {
      children.push_back({childp, {AnyTuple{arity}}});
    }

    Type getLabelType(Name label) {
      WASM_UNREACHABLE("labels should be explicitly provided");
    };

    void visitIf(If* curr) {
      // Skip the control flow children because we only want to pop the
      // condition.
      children.push_back({&curr->condition, {Subtype{Type::i32}}});
    }
  };

  IRBuilder& builder;

  ChildPopper(IRBuilder& builder) : builder(builder) {}

private:
  Result<> popConstrainedChildren(std::vector<Child>& children) {
    auto& scope = builder.getScope();

    // Two-part indices into the stack of available expressions and the vector
    // of requirements, allowing them to move independently with the granularity
    // of a single tuple element.
    size_t stackIndex = scope.exprStack.size();
    size_t stackTupleIndex = 0;
    size_t childIndex = children.size();
    size_t childTupleIndex = 0;

    // The index of the shallowest unreachable instruction on the stack.
    std::optional<size_t> unreachableIndex;

    // Whether popping the children past the unreachable would produce a type
    // mismatch or try to pop from an empty stack.
    bool needUnreachableFallback = false;

    if (!scope.unreachable) {
      // We only need to check requirements if there is an unreachable.
      // Otherwise the validator will catch any problems.
      goto pop;
    }

    // Check whether the values on the stack will be able to meet the given
    // requirements.
    while (true) {
      // Advance to the next requirement.
      if (childTupleIndex > 0) {
        --childTupleIndex;
      } else {
        if (childIndex == 0) {
          // We have examined all the requirements.
          break;
        }
        --childIndex;
        childTupleIndex = children[childIndex].constraint.size() - 1;
      }

      // Advance to the next available value on the stack.
      while (true) {
        if (stackTupleIndex > 0) {
          --stackTupleIndex;
        } else {
          if (stackIndex == 0) {
            // No more available values. This is valid iff we are reaching past
            // an unreachable, but we still need the fallback behavior to ensure
            // the input unreachable instruction is executed first. If we are
            // not reaching past an unreachable, the error will be caught when
            // we pop.
            needUnreachableFallback = true;
            goto pop;
          }
          --stackIndex;
          stackTupleIndex = scope.exprStack[stackIndex]->type.size() - 1;
        }

        // Skip expressions that don't produce values.
        if (scope.exprStack[stackIndex]->type == Type::none) {
          stackTupleIndex = 0;
          continue;
        }
        break;
      }

      // We have an available type and a constraint. Only check constraints if
      // we are past an unreachable, since otherwise we can leave problems to be
      // caught by the validator later.
      auto type = scope.exprStack[stackIndex]->type[stackTupleIndex];
      if (unreachableIndex) {
        auto constraint = children[childIndex].constraint[childTupleIndex];
        if (constraint.isAnyType()) {
          // Always succeeds.
        } else if (constraint.isAnyReference()) {
          if (!type.isRef() && type != Type::unreachable) {
            needUnreachableFallback = true;
            break;
          }
        } else if (auto bound = constraint.getSubtype()) {
          if (!Type::isSubType(type, *bound)) {
            needUnreachableFallback = true;
            break;
          }
        } else {
          WASM_UNREACHABLE("unexpected constraint");
        }
      }

      // No problems for children after this unreachable.
      if (type == Type::unreachable) {
        assert(!needUnreachableFallback);
        unreachableIndex = stackIndex;
      }
    }

  pop:
    // We have checked all the constraints, so we are ready to pop children.
    for (int i = children.size() - 1; i >= 0; --i) {
      if (needUnreachableFallback &&
          scope.exprStack.size() == *unreachableIndex + 1 && i > 0) {
        // The next item on the stack is the unreachable instruction we must
        // not pop past. We cannot insert unreachables in front of it because
        // it might be a branch we actually have to execute, so this next item
        // must be child 0. But we are not ready to pop child 0 yet, so
        // synthesize an unreachable instead of popping. The deeper
        // instructions that would otherwise have been popped will remain on
        // the stack to become prior children of future expressions or to be
        // implicitly dropped at the end of the scope.
        *children[i].childp = builder.builder.makeUnreachable();
        continue;
      }

      // Pop a child normally.
      auto val = pop(children[i].constraint.size());
      CHECK_ERR(val);
      *children[i].childp = *val;
    }
    return Ok{};
  }

  Result<Expression*> pop(size_t size) {
    assert(size >= 1);
    auto& scope = builder.getScope();

    // Find the suffix of expressions that do not produce values.
    auto hoisted = builder.hoistLastValue();
    CHECK_ERR(hoisted);
    if (!hoisted) {
      // There are no expressions that produce values.
      if (scope.unreachable) {
        return builder.builder.makeUnreachable();
      }
      return Err{"popping from empty stack"};
    }

    CHECK_ERR(builder.packageHoistedValue(*hoisted, size));

    auto* ret = scope.exprStack.back();
    // If the top value has the correct size, we can pop it and be done.
    // Unreachable values satisfy any size.
    if (ret->type.size() == size || ret->type == Type::unreachable) {
      scope.exprStack.pop_back();
      return ret;
    }

    // The last value-producing expression did not produce exactly the right
    // number of values, so we need to construct a tuple piecewise instead.
    assert(size > 1);
    std::vector<Expression*> elems;
    elems.resize(size);
    for (int i = size - 1; i >= 0; --i) {
      auto elem = pop(1);
      CHECK_ERR(elem);
      elems[i] = *elem;
    }
    return builder.builder.makeTupleMake(elems);
  }

public:
  Result<> visitExpression(Expression* expr) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visit(expr);
    return popConstrainedChildren(children);
  }

  Result<> visitAtomicCmpxchg(AtomicCmpxchg* curr,
                              std::optional<Type> type = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitAtomicCmpxchg(curr, type);
    return popConstrainedChildren(children);
  }

  Result<> visitStructGet(StructGet* curr,
                          std::optional<HeapType> ht = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitStructGet(curr, ht);
    return popConstrainedChildren(children);
  }

  Result<> visitStructSet(StructSet* curr,
                          std::optional<HeapType> ht = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitStructSet(curr, ht);
    return popConstrainedChildren(children);
  }

  Result<> visitArrayGet(ArrayGet* curr,
                         std::optional<HeapType> ht = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitArrayGet(curr, ht);
    return popConstrainedChildren(children);
  }

  Result<> visitArraySet(ArraySet* curr,
                         std::optional<HeapType> ht = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitArraySet(curr, ht);
    return popConstrainedChildren(children);
  }

  Result<> visitArrayCopy(ArrayCopy* curr,
                          std::optional<HeapType> dest = std::nullopt,
                          std::optional<HeapType> src = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitArrayCopy(curr, dest, src);
    return popConstrainedChildren(children);
  }

  Result<> visitArrayFill(ArrayFill* curr,
                          std::optional<HeapType> ht = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitArrayFill(curr, ht);
    return popConstrainedChildren(children);
  }

  Result<> visitArrayInitData(ArrayInitData* curr,
                              std::optional<HeapType> ht = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitArrayInitData(curr, ht);
    return popConstrainedChildren(children);
  }

  Result<> visitArrayInitElem(ArrayInitElem* curr,
                              std::optional<HeapType> ht = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitArrayInitElem(curr, ht);
    return popConstrainedChildren(children);
  }

  Result<> visitStringNew(StringNew* curr,
                          std::optional<HeapType> ht = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitStringNew(curr, ht);
    return popConstrainedChildren(children);
  }

  Result<> visitStringEncode(StringEncode* curr,
                             std::optional<HeapType> ht = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitStringEncode(curr, ht);
    return popConstrainedChildren(children);
  }

  Result<> visitCallRef(CallRef* curr,
                        std::optional<HeapType> ht = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitCallRef(curr, ht);
    return popConstrainedChildren(children);
  }

  Result<> visitBreak(Break* curr,
                      std::optional<Type> labelType = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitBreak(curr, labelType);
    return popConstrainedChildren(children);
  }

  Result<> visitSwitch(Switch* curr,
                       std::optional<Type> labelType = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitSwitch(curr, labelType);
    return popConstrainedChildren(children);
  }

  Result<> visitDrop(Drop* curr, std::optional<Index> arity = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitDrop(curr, arity);
    return popConstrainedChildren(children);
  }

  Result<> visitTupleExtract(TupleExtract* curr,
                             std::optional<Index> arity = std::nullopt) {
    std::vector<Child> children;
    ConstraintCollector{builder, children}.visitTupleExtract(curr, arity);
    return popConstrainedChildren(children);
  }
};

Result<> IRBuilder::visit(Expression* curr) {
  // Call either `visitExpression` or an expression-specific override.
  auto val = UnifiedExpressionVisitor<IRBuilder, Result<>>::visit(curr);
  CHECK_ERR(val);
  if (auto* block = curr->dynCast<Block>()) {
    block->finalize(block->type);
  } else {
    // TODO: Call more efficient versions of finalize() that take the known type
    // for other kinds of nodes as well, as done above.
    ReFinalizeNode{}.visit(curr);
  }
  push(curr);
  return Ok{};
}

// Handle the common case of instructions with a constant number of children
// uniformly.
Result<> IRBuilder::visitExpression(Expression* curr) {
  if (Properties::isControlFlowStructure(curr) && !curr->is<If>()) {
    // Control flow structures (besides `if`, handled separately) do not consume
    // stack values.
    return Ok{};
  }
  return ChildPopper{*this}.visit(curr);
}

Result<Type> IRBuilder::getLabelType(Index label) {
  auto scope = getScope(label);
  CHECK_ERR(scope);
  // Loops receive their input type rather than their output type.
  return (*scope)->getLoop() ? (*scope)->inputType : (*scope)->getResultType();
}

Result<Type> IRBuilder::getLabelType(Name labelName) {
  auto label = getLabelIndex(labelName);
  CHECK_ERR(label);
  return getLabelType(*label);
}

Result<> IRBuilder::visitBreakWithType(Break* curr, Type type) {
  CHECK_ERR(ChildPopper{*this}.visitBreak(curr, type));
  curr->finalize();
  push(curr);
  return Ok{};
}

Result<> IRBuilder::visitSwitchWithType(Switch* curr, Type type) {
  CHECK_ERR(ChildPopper{*this}.visitSwitch(curr, type));
  curr->finalize();
  push(curr);
  return Ok{};
}

Result<> IRBuilder::visitFunctionStart(Function* func) {
  if (!scopeStack.empty()) {
    return Err{"unexpected start of function"};
  }
  if (auto* loc = std::get_if<Function::DebugLocation>(&debugLoc)) {
    func->prologLocation = *loc;
  }
  debugLoc = CanReceiveDebug();
  scopeStack.push_back(ScopeCtx::makeFunc(func));
  this->func = func;

  if (binaryPos) {
    lastBinaryPos = *binaryPos;
  }

  return Ok{};
}

Result<> IRBuilder::visitBlockStart(Block* curr, Type inputType) {
  applyDebugLoc(curr);
  return pushScope(ScopeCtx::makeBlock(curr, inputType));
}

Result<> IRBuilder::visitIfStart(If* iff, Name label, Type inputType) {
  applyDebugLoc(iff);
  CHECK_ERR(visitIf(iff));
  return pushScope(ScopeCtx::makeIf(iff, label, inputType));
}

Result<> IRBuilder::visitLoopStart(Loop* loop, Type inputType) {
  applyDebugLoc(loop);
  return pushScope(ScopeCtx::makeLoop(loop, inputType));
}

Result<> IRBuilder::visitTryStart(Try* tryy, Name label, Type inputType) {
  applyDebugLoc(tryy);
  return pushScope(ScopeCtx::makeTry(tryy, label, inputType));
}

Result<>
IRBuilder::visitTryTableStart(TryTable* trytable, Name label, Type inputType) {
  applyDebugLoc(trytable);
  return pushScope(ScopeCtx::makeTryTable(trytable, label, inputType));
}

Result<Expression*> IRBuilder::finishScope(Block* block) {
#if IR_BUILDER_DEBUG
  if (auto* loc = std::get_if<Function::DebugLocation>(&debugLoc)) {
    std::cerr << "discarding debugloc " << loc->fileIndex << ":"
              << loc->lineNumber << ":" << loc->columnNumber << "\n";
  }
#endif
  debugLoc = CanReceiveDebug();

  if (scopeStack.empty() || scopeStack.back().isNone()) {
    return Err{"unexpected end of scope"};
  }

  auto& scope = scopeStack.back();
  auto type = scope.getResultType();

  if (scope.unreachable) {
    // Drop everything before the last unreachable.
    bool sawUnreachable = false;
    for (int i = scope.exprStack.size() - 1; i >= 0; --i) {
      if (sawUnreachable) {
        scope.exprStack[i] = builder.dropIfConcretelyTyped(scope.exprStack[i]);
      } else if (scope.exprStack[i]->type == Type::unreachable) {
        sawUnreachable = true;
      }
    }
  }

  if (type.isConcrete()) {
    auto hoisted = hoistLastValue();
    CHECK_ERR(hoisted);
    if (!hoisted) {
      return Err{"popping from empty stack"};
    }

    if (type.isTuple()) {
      auto hoistedType = scope.exprStack.back()->type;
      if (hoistedType != Type::unreachable &&
          hoistedType.size() != type.size()) {
        // We cannot propagate the hoisted value directly because it does not
        // have the correct number of elements. Repackage it.
        CHECK_ERR(packageHoistedValue(*hoisted, hoistedType.size()));
        CHECK_ERR(makeTupleMake(type.size()));
      }
    }
  }

  Expression* ret = nullptr;
  if (scope.exprStack.size() == 0) {
    // No expressions for this scope, but we need something. If we were given a
    // block, we can empty it out and return it, but otherwise create a new
    // empty block.
    if (block) {
      block->list.clear();
      ret = block;
    } else {
      ret = builder.makeBlock();
    }
  } else if (scope.exprStack.size() == 1) {
    // We can put our single expression directly into the surrounding scope.
    if (block) {
      block->list.resize(1);
      block->list[0] = scope.exprStack.back();
      ret = block;
    } else {
      ret = scope.exprStack.back();
    }
  } else {
    // More than one expression, so we need a block. Allocate one if we weren't
    // already given one.
    if (block) {
      block->list.set(scope.exprStack);
    } else {
      block = builder.makeBlock(scope.exprStack, type);
    }
    ret = block;
  }

  // If this scope had a label, remove it from the context.
  if (auto label = scope.getOriginalLabel()) {
    labelDepths.at(label).pop_back();
  }

  scopeStack.pop_back();
  return ret;
}

Result<> IRBuilder::visitElse() {
  auto& scope = getScope();
  auto* iff = scope.getIf();
  if (!iff) {
    return Err{"unexpected else"};
  }
  auto originalLabel = scope.getOriginalLabel();
  auto label = scope.label;
  auto labelUsed = scope.labelUsed;
  auto inputType = scope.inputType;
  auto inputLocal = scope.inputLocal;
  auto expr = finishScope();
  CHECK_ERR(expr);
  iff->ifTrue = *expr;

  if (binaryPos && func) {
    func->delimiterLocations[iff][BinaryLocations::Else] =
      lastBinaryPos - codeSectionOffset;
  }

  return pushScope(ScopeCtx::makeElse(
    iff, originalLabel, label, labelUsed, inputType, inputLocal));
}

Result<> IRBuilder::visitCatch(Name tag) {
  auto& scope = getScope();
  bool wasTry = true;
  auto* tryy = scope.getTry();
  if (!tryy) {
    wasTry = false;
    tryy = scope.getCatch();
  }
  if (!tryy) {
    return Err{"unexpected catch"};
  }
  auto originalLabel = scope.getOriginalLabel();
  auto label = scope.label;
  auto labelUsed = scope.labelUsed;
  auto branchLabel = scope.branchLabel;
  auto expr = finishScope();
  CHECK_ERR(expr);
  if (wasTry) {
    tryy->body = *expr;
  } else {
    tryy->catchBodies.push_back(*expr);
  }
  tryy->catchTags.push_back(tag);

  if (binaryPos && func) {
    auto& delimiterLocs = func->delimiterLocations[tryy];
    delimiterLocs[delimiterLocs.size()] = lastBinaryPos - codeSectionOffset;
  }

  CHECK_ERR(pushScope(
    ScopeCtx::makeCatch(tryy, originalLabel, label, labelUsed, branchLabel)));
  // Push a pop for the exception payload if necessary.
  auto params = wasm.getTag(tag)->sig.params;
  if (params != Type::none) {
    // Note that we have a pop to help determine later whether we need to run
    // the fixup for pops within blocks.
    scopeStack[0].notePop();
    push(builder.makePop(params));
  }

  return Ok{};
}

Result<> IRBuilder::visitCatchAll() {
  auto& scope = getScope();
  bool wasTry = true;
  auto* tryy = scope.getTry();
  if (!tryy) {
    wasTry = false;
    tryy = scope.getCatch();
  }
  if (!tryy) {
    return Err{"unexpected catch"};
  }
  auto originalLabel = scope.getOriginalLabel();
  auto label = scope.label;
  auto labelUsed = scope.labelUsed;
  auto branchLabel = scope.branchLabel;
  auto expr = finishScope();
  CHECK_ERR(expr);
  if (wasTry) {
    tryy->body = *expr;
  } else {
    tryy->catchBodies.push_back(*expr);
  }

  if (binaryPos && func) {
    auto& delimiterLocs = func->delimiterLocations[tryy];
    delimiterLocs[delimiterLocs.size()] = lastBinaryPos - codeSectionOffset;
  }

  return pushScope(
    ScopeCtx::makeCatchAll(tryy, originalLabel, label, labelUsed, branchLabel));
}

Result<> IRBuilder::visitDelegate(Index label) {
  auto& scope = getScope();
  auto* tryy = scope.getTry();
  if (!tryy) {
    return Err{"unexpected delegate"};
  }
  // In Binaryen IR, delegates can only target try or function scopes directly.
  // Search upward to find the nearest enclosing try or function scope. Since
  // the given label is relative the parent scope of the try, start by adjusting
  // it to be relative to the try scope.
  ++label;
  for (size_t size = scopeStack.size(); label < size; ++label) {
    auto& delegateScope = scopeStack[size - label - 1];
    if (delegateScope.getTry()) {
      auto delegateName = getDelegateLabelName(label);
      CHECK_ERR(delegateName);
      tryy->delegateTarget = *delegateName;
      break;
    } else if (delegateScope.getFunction()) {
      tryy->delegateTarget = DELEGATE_CALLER_TARGET;
      break;
    }
  }
  if (label == scopeStack.size()) {
    return Err{"unexpected delegate"};
  }
  // Delegate ends the try.
  return visitEnd();
}

Result<> IRBuilder::visitEnd() {
  auto scope = getScope();
  if (scope.isNone()) {
    return Err{"unexpected end"};
  }
  if (auto* func = scope.getFunction()) {
    if (auto* loc = std::get_if<Function::DebugLocation>(&debugLoc)) {
      func->epilogLocation = *loc;
    }
  }
  debugLoc = CanReceiveDebug();
  auto expr = finishScope(scope.getBlock());
  CHECK_ERR(expr);

  // If the scope expression cannot be directly labeled, we may need to wrap it
  // in a block. It's possible that the scope expression becomes typed
  // unreachable when it is finalized, but if the wrapper block is targeted by
  // any branches, the target block needs to have the original non-unreachable
  // type of the scope expression.
  auto originalScopeType = scope.getResultType();
  auto maybeWrapForLabel = [&](Expression* curr) -> Expression* {
    bool isTry = scope.getTry() || scope.getCatch() || scope.getCatchAll();
    auto& label = isTry ? scope.branchLabel : scope.label;
    if (!label) {
      return curr;
    }
    auto blockType =
      scope.labelUsed ? originalScopeType : scope.getResultType();
    // We can re-use unnamed blocks instead of wrapping them.
    if (auto* block = curr->dynCast<Block>(); block && !block->name) {
      block->name = label;
      block->type = blockType;
      return block;
    }
    auto* block = builder.makeBlock();
    block->name = label;
    block->list.push_back(curr);
    block->finalize(blockType,
                    scope.labelUsed ? Block::HasBreak : Block::NoBreak);
    return block;
  };

  // The binary position we record for the block instruction should start at the
  // beginning of the block, not at the beginning of the `end`.
  lastBinaryPos = scope.startPos;

  if (auto* func = scope.getFunction()) {
    func->body = maybeWrapForLabel(*expr);
    labelDepths.clear();
    if (scope.needsPopFixup()) {
      // We may be in the binary parser, where pops need to be fixed up before
      // we know that EH will be enabled.
      EHUtils::handleBlockNestedPops(
        func, wasm, EHUtils::FeaturePolicy::RunIfNoEH);
    }
    this->func = nullptr;
    blockHint = 0;
    labelHint = 0;
  } else if (auto* block = scope.getBlock()) {
    assert(*expr == block);
    block->name = scope.label;
    block->finalize(block->type,
                    scope.labelUsed ? Block::HasBreak : Block::NoBreak);
    push(block);
  } else if (auto* loop = scope.getLoop()) {
    loop->body = *expr;
    loop->name = scope.label;
    if (scope.inputType != Type::none && scope.labelUsed) {
      // Branches to this loop carry values, but Binaryen IR does not support
      // that. Fix this by trampolining the branches through new code that sets
      // the branch value to the appropriate scratch local.
      fixLoopWithInput(loop, scope.inputType, scope.inputLocal);
    }
    loop->finalize(loop->type);
    push(loop);
  } else if (auto* iff = scope.getIf()) {
    iff->ifTrue = *expr;
    if (scope.inputType != Type::none) {
      // Normally an if without an else must have type none, but if there is an
      // input parameter, the empty else arm must propagate its value.
      // Synthesize an else arm that loads the value from the scratch local.
      iff->ifFalse = builder.makeLocalGet(scope.inputLocal, scope.inputType);
    } else {
      iff->ifFalse = nullptr;
    }
    iff->finalize(iff->type);
    push(maybeWrapForLabel(iff));
  } else if (auto* iff = scope.getElse()) {
    iff->ifFalse = *expr;
    iff->finalize(iff->type);
    push(maybeWrapForLabel(iff));
  } else if (auto* tryy = scope.getTry()) {
    tryy->body = *expr;
    tryy->name = scope.label;
    tryy->finalize(tryy->type);
    push(maybeWrapForLabel(tryy));
  } else if (Try * tryy;
             (tryy = scope.getCatch()) || (tryy = scope.getCatchAll())) {
    tryy->catchBodies.push_back(*expr);
    tryy->name = scope.label;
    tryy->finalize(tryy->type);
    push(maybeWrapForLabel(tryy));
  } else if (auto* trytable = scope.getTryTable()) {
    trytable->body = *expr;
    trytable->finalize(trytable->type, &wasm);
    push(maybeWrapForLabel(trytable));
  } else {
    WASM_UNREACHABLE("unexpected scope kind");
  }
  return Ok{};
}

// Branches to this loop need to be trampolined through code that sets the value
// carried by the branch to the appropriate scratch local before branching to
// the loop. Transform this:
//
//   (loop $l (param t1) (result t2) ...)
//
// to this:
//
//  (loop $l0 (result t2)
//    (block $l1 (result t2)
//      (local.set $scratch ;; set the branch values to the scratch local
//        (block $l (result t1)
//          (br $l1 ;; exit the loop with the fallthrough value, if any.
//            ...   ;; contains branches to $l
//          )
//        )
//      )
//      (br $l0) ;; continue the loop
//    )
//  )
void IRBuilder::fixLoopWithInput(Loop* loop, Type inputType, Index scratch) {
  auto l = loop->name;
  auto l0 = makeFresh(l, 0);
  auto l1 = makeFresh(l, 1);

  Block* inner =
    loop->type == Type::none
      ? builder.blockifyWithName(
          loop->body, l, builder.makeBreak(l1), inputType)
      : builder.makeBlock(l, {builder.makeBreak(l1, loop->body)}, inputType);

  Block* outer = builder.makeBlock(
    l1,
    {builder.makeLocalSet(scratch, inner), builder.makeBreak(l0)},
    loop->type);

  loop->body = outer;
  loop->name = l0;
}

Result<Index> IRBuilder::getLabelIndex(Name label, bool inDelegate) {
  auto it = labelDepths.find(label);
  if (it == labelDepths.end() || it->second.empty()) {
    return Err{"unexpected label '"s + label.toString() + "'"};
  }
  auto index = scopeStack.size() - it->second.back();
  if (inDelegate) {
    if (index == 0) {
      // The real label we're referencing, if it exists, has been shadowed by
      // the `try`. Get the previous label with this name instead. For example:
      //
      // block $l
      //  try $l
      //  delegate $l
      // end
      //
      // The `delegate $l` should target the block, not the try, even though a
      // normal branch to $l in the try's scope would target the try.
      if (it->second.size() <= 1) {
        return Err{"unexpected self-referencing label '"s + label.toString() +
                   "'"};
      }
      index = scopeStack.size() - it->second[it->second.size() - 2];
      assert(index != 0);
    }
    // Adjust the index to be relative to the try.
    --index;
  }
  return index;
}

Result<Name> IRBuilder::getLabelName(Index label, bool forDelegate) {
  auto scope = getScope(label);
  CHECK_ERR(scope);

  // For normal branches to try blocks, we need to use the secondary label.
  bool useTryBranchLabel =
    !forDelegate &&
    ((*scope)->getTry() || (*scope)->getCatch() || (*scope)->getCatchAll());
  auto& scopeLabel =
    useTryBranchLabel ? (*scope)->branchLabel : (*scope)->label;

  if (!scopeLabel) {
    // The scope does not already have a name, so we need to create one.
    if ((*scope)->getBlock()) {
      scopeLabel = makeFresh("block", blockHint++);
    } else {
      scopeLabel = makeFresh("label", labelHint++);
    }
  }
  if (!forDelegate) {
    (*scope)->labelUsed = true;
  }
  return scopeLabel;
}

Result<> IRBuilder::makeNop() {
  push(builder.makeNop());
  return Ok{};
}

Result<> IRBuilder::makeBlock(Name label, Signature sig) {
  auto* block = wasm.allocator.alloc<Block>();
  block->name = label;
  block->type = sig.results;
  return visitBlockStart(block, sig.params);
}

Result<> IRBuilder::makeIf(Name label, Signature sig) {
  auto* iff = wasm.allocator.alloc<If>();
  iff->type = sig.results;
  return visitIfStart(iff, label, sig.params);
}

Result<> IRBuilder::makeLoop(Name label, Signature sig) {
  auto* loop = wasm.allocator.alloc<Loop>();
  loop->name = label;
  loop->type = sig.results;
  return visitLoopStart(loop, sig.params);
}

Result<> IRBuilder::makeBreak(Index label, bool isConditional) {
  auto name = getLabelName(label);
  CHECK_ERR(name);
  auto labelType = getLabelType(label);
  CHECK_ERR(labelType);

  Break curr;
  curr.name = *name;
  // Use a dummy condition value if we need to pop a condition.
  curr.condition = isConditional ? &curr : nullptr;
  CHECK_ERR(ChildPopper{*this}.visitBreak(&curr, *labelType));
  push(builder.makeBreak(curr.name, curr.value, curr.condition));
  return Ok{};
}

Result<> IRBuilder::makeSwitch(const std::vector<Index>& labels,
                               Index defaultLabel) {
  auto defaultType = getLabelType(defaultLabel);
  CHECK_ERR(defaultType);

  std::vector<Name> names;
  names.reserve(labels.size());
  Type glbLabelType = *defaultType;
  for (auto label : labels) {
    auto name = getLabelName(label);
    CHECK_ERR(name);
    names.push_back(*name);
    auto type = getLabelType(label);
    CHECK_ERR(type);
    glbLabelType = Type::getGreatestLowerBound(glbLabelType, *type);
  }

  auto defaultName = getLabelName(defaultLabel);
  CHECK_ERR(defaultName);

  Switch curr(wasm.allocator);
  CHECK_ERR(ChildPopper{*this}.visitSwitch(&curr, glbLabelType));
  push(builder.makeSwitch(names, *defaultName, curr.condition, curr.value));
  return Ok{};
}

Result<> IRBuilder::makeCall(Name func, bool isReturn) {
  auto sig = wasm.getFunction(func)->getSig();
  Call curr(wasm.allocator);
  curr.target = func;
  curr.operands.resize(sig.params.size());
  CHECK_ERR(visitCall(&curr));
  push(builder.makeCall(curr.target, curr.operands, sig.results, isReturn));
  return Ok{};
}

Result<> IRBuilder::makeCallIndirect(Name table, HeapType type, bool isReturn) {
  CallIndirect curr(wasm.allocator);
  curr.heapType = type;
  curr.operands.resize(type.getSignature().params.size());
  CHECK_ERR(visitCallIndirect(&curr));
  push(builder.makeCallIndirect(
    table, curr.target, curr.operands, type, isReturn));
  return Ok{};
}

Result<> IRBuilder::makeLocalGet(Index local) {
  push(builder.makeLocalGet(local, func->getLocalType(local)));
  return Ok{};
}

Result<> IRBuilder::makeLocalSet(Index local) {
  LocalSet curr;
  curr.index = local;
  CHECK_ERR(visitLocalSet(&curr));
  push(builder.makeLocalSet(local, curr.value));
  return Ok{};
}

Result<> IRBuilder::makeLocalTee(Index local) {
  LocalSet curr;
  curr.index = local;
  CHECK_ERR(visitLocalSet(&curr));
  push(builder.makeLocalTee(local, curr.value, func->getLocalType(local)));
  return Ok{};
}

Result<> IRBuilder::makeGlobalGet(Name global) {
  push(builder.makeGlobalGet(global, wasm.getGlobal(global)->type));
  return Ok{};
}

Result<> IRBuilder::makeGlobalSet(Name global) {
  GlobalSet curr;
  curr.name = global;
  CHECK_ERR(visitGlobalSet(&curr));
  push(builder.makeGlobalSet(global, curr.value));
  return Ok{};
}

Result<> IRBuilder::makeLoad(unsigned bytes,
                             bool signed_,
                             Address offset,
                             unsigned align,
                             Type type,
                             Name mem) {
  Load curr;
  curr.memory = mem;
  CHECK_ERR(visitLoad(&curr));
  push(builder.makeLoad(bytes, signed_, offset, align, curr.ptr, type, mem));
  return Ok{};
}

Result<> IRBuilder::makeStore(
  unsigned bytes, Address offset, unsigned align, Type type, Name mem) {
  Store curr;
  curr.memory = mem;
  curr.valueType = type;
  CHECK_ERR(visitStore(&curr));
  push(
    builder.makeStore(bytes, offset, align, curr.ptr, curr.value, type, mem));
  return Ok{};
}

Result<>
IRBuilder::makeAtomicLoad(unsigned bytes, Address offset, Type type, Name mem) {
  Load curr;
  curr.memory = mem;
  CHECK_ERR(visitLoad(&curr));
  push(builder.makeAtomicLoad(bytes, offset, curr.ptr, type, mem));
  return Ok{};
}

Result<> IRBuilder::makeAtomicStore(unsigned bytes,
                                    Address offset,
                                    Type type,
                                    Name mem) {
  Store curr;
  curr.memory = mem;
  curr.valueType = type;
  CHECK_ERR(visitStore(&curr));
  push(builder.makeAtomicStore(bytes, offset, curr.ptr, curr.value, type, mem));
  return Ok{};
}

Result<> IRBuilder::makeAtomicRMW(
  AtomicRMWOp op, unsigned bytes, Address offset, Type type, Name mem) {
  AtomicRMW curr;
  curr.memory = mem;
  curr.type = type;
  CHECK_ERR(visitAtomicRMW(&curr));
  push(
    builder.makeAtomicRMW(op, bytes, offset, curr.ptr, curr.value, type, mem));
  return Ok{};
}

Result<> IRBuilder::makeAtomicCmpxchg(unsigned bytes,
                                      Address offset,
                                      Type type,
                                      Name mem) {
  AtomicCmpxchg curr;
  curr.memory = mem;
  CHECK_ERR(ChildPopper{*this}.visitAtomicCmpxchg(&curr, type));
  push(builder.makeAtomicCmpxchg(
    bytes, offset, curr.ptr, curr.expected, curr.replacement, type, mem));
  return Ok{};
}

Result<> IRBuilder::makeAtomicWait(Type type, Address offset, Name mem) {
  AtomicWait curr;
  curr.memory = mem;
  curr.expectedType = type;
  CHECK_ERR(visitAtomicWait(&curr));
  push(builder.makeAtomicWait(
    curr.ptr, curr.expected, curr.timeout, type, offset, mem));
  return Ok{};
}

Result<> IRBuilder::makeAtomicNotify(Address offset, Name mem) {
  AtomicNotify curr;
  curr.memory = mem;
  CHECK_ERR(visitAtomicNotify(&curr));
  push(builder.makeAtomicNotify(curr.ptr, curr.notifyCount, offset, mem));
  return Ok{};
}

Result<> IRBuilder::makeAtomicFence() {
  push(builder.makeAtomicFence());
  return Ok{};
}

Result<> IRBuilder::makeSIMDExtract(SIMDExtractOp op, uint8_t lane) {
  SIMDExtract curr;
  CHECK_ERR(visitSIMDExtract(&curr));
  push(builder.makeSIMDExtract(op, curr.vec, lane));
  return Ok{};
}

Result<> IRBuilder::makeSIMDReplace(SIMDReplaceOp op, uint8_t lane) {
  SIMDReplace curr;
  curr.op = op;
  CHECK_ERR(visitSIMDReplace(&curr));
  push(builder.makeSIMDReplace(op, curr.vec, lane, curr.value));
  return Ok{};
}

Result<> IRBuilder::makeSIMDShuffle(const std::array<uint8_t, 16>& lanes) {
  SIMDShuffle curr;
  CHECK_ERR(visitSIMDShuffle(&curr));
  push(builder.makeSIMDShuffle(curr.left, curr.right, lanes));
  return Ok{};
}

Result<> IRBuilder::makeSIMDTernary(SIMDTernaryOp op) {
  SIMDTernary curr;
  CHECK_ERR(visitSIMDTernary(&curr));
  push(builder.makeSIMDTernary(op, curr.a, curr.b, curr.c));
  return Ok{};
}

Result<> IRBuilder::makeSIMDShift(SIMDShiftOp op) {
  SIMDShift curr;
  CHECK_ERR(visitSIMDShift(&curr));
  push(builder.makeSIMDShift(op, curr.vec, curr.shift));
  return Ok{};
}

Result<> IRBuilder::makeSIMDLoad(SIMDLoadOp op,
                                 Address offset,
                                 unsigned align,
                                 Name mem) {
  SIMDLoad curr;
  curr.memory = mem;
  CHECK_ERR(visitSIMDLoad(&curr));
  push(builder.makeSIMDLoad(op, offset, align, curr.ptr, mem));
  return Ok{};
}

Result<> IRBuilder::makeSIMDLoadStoreLane(SIMDLoadStoreLaneOp op,
                                          Address offset,
                                          unsigned align,
                                          uint8_t lane,
                                          Name mem) {
  SIMDLoadStoreLane curr;
  curr.memory = mem;
  CHECK_ERR(visitSIMDLoadStoreLane(&curr));
  push(builder.makeSIMDLoadStoreLane(
    op, offset, align, lane, curr.ptr, curr.vec, mem));
  return Ok{};
}

Result<> IRBuilder::makeMemoryInit(Name data, Name mem) {
  MemoryInit curr;
  curr.memory = mem;
  CHECK_ERR(visitMemoryInit(&curr));
  push(builder.makeMemoryInit(data, curr.dest, curr.offset, curr.size, mem));
  return Ok{};
}

Result<> IRBuilder::makeDataDrop(Name data) {
  push(builder.makeDataDrop(data));
  return Ok{};
}

Result<> IRBuilder::makeMemoryCopy(Name destMem, Name srcMem) {
  MemoryCopy curr;
  curr.destMemory = destMem;
  curr.sourceMemory = srcMem;
  CHECK_ERR(visitMemoryCopy(&curr));
  push(
    builder.makeMemoryCopy(curr.dest, curr.source, curr.size, destMem, srcMem));
  return Ok{};
}

Result<> IRBuilder::makeMemoryFill(Name mem) {
  MemoryFill curr;
  curr.memory = mem;
  CHECK_ERR(visitMemoryFill(&curr));
  push(builder.makeMemoryFill(curr.dest, curr.value, curr.size, mem));
  return Ok{};
}

Result<> IRBuilder::makeConst(Literal val) {
  push(builder.makeConst(val));
  return Ok{};
}

Result<> IRBuilder::makeUnary(UnaryOp op) {
  Unary curr;
  curr.op = op;
  CHECK_ERR(visitUnary(&curr));
  push(builder.makeUnary(op, curr.value));
  return Ok{};
}

Result<> IRBuilder::makeBinary(BinaryOp op) {
  Binary curr;
  curr.op = op;
  CHECK_ERR(visitBinary(&curr));
  push(builder.makeBinary(op, curr.left, curr.right));
  return Ok{};
}

Result<> IRBuilder::makeSelect(std::optional<Type> type) {
  Select curr;
  CHECK_ERR(visitSelect(&curr));
  auto* built = builder.makeSelect(curr.condition, curr.ifTrue, curr.ifFalse);
  if (type && !Type::isSubType(built->type, *type)) {
    return Err{"select type does not match expected type"};
  }
  push(built);
  return Ok{};
}

Result<> IRBuilder::makeDrop() {
  Drop curr;
  CHECK_ERR(ChildPopper{*this}.visitDrop(&curr, 1));
  push(builder.makeDrop(curr.value));
  return Ok{};
}

Result<> IRBuilder::makeReturn() {
  Return curr;
  CHECK_ERR(visitReturn(&curr));
  push(builder.makeReturn(curr.value));
  return Ok{};
}

Result<> IRBuilder::makeMemorySize(Name mem) {
  push(builder.makeMemorySize(mem));
  return Ok{};
}

Result<> IRBuilder::makeMemoryGrow(Name mem) {
  MemoryGrow curr;
  curr.memory = mem;
  CHECK_ERR(visitMemoryGrow(&curr));
  push(builder.makeMemoryGrow(curr.delta, mem));
  return Ok{};
}

Result<> IRBuilder::makeUnreachable() {
  push(builder.makeUnreachable());
  return Ok{};
}

Result<> IRBuilder::makePop(Type type) {
  // We don't actually want to create a new Pop expression here because we
  // already create them automatically when starting a legacy catch block that
  // needs one. Just verify that the Pop we are being asked to make is the same
  // type as the Pop we have already made.
  auto& scope = getScope();
  if (!scope.getCatch() || scope.exprStack.size() != 1 ||
      !scope.exprStack[0]->is<Pop>()) {
    return Err{
      "pop instructions may only appear at the beginning of catch blocks"};
  }
  auto expectedType = scope.exprStack[0]->type;
  if (!Type::isSubType(expectedType, type)) {
    return Err{std::string("Expected pop of type ") + expectedType.toString()};
  }
  return Ok{};
}

Result<> IRBuilder::makeRefNull(HeapType type) {
  push(builder.makeRefNull(type));
  return Ok{};
}

Result<> IRBuilder::makeRefIsNull() {
  RefIsNull curr;
  CHECK_ERR(visitRefIsNull(&curr));
  push(builder.makeRefIsNull(curr.value));
  return Ok{};
}

Result<> IRBuilder::makeRefFunc(Name func) {
  push(builder.makeRefFunc(func, wasm.getFunction(func)->type));
  return Ok{};
}

Result<> IRBuilder::makeRefEq() {
  RefEq curr;
  CHECK_ERR(visitRefEq(&curr));
  push(builder.makeRefEq(curr.left, curr.right));
  return Ok{};
}

Result<> IRBuilder::makeTableGet(Name table) {
  TableGet curr;
  CHECK_ERR(visitTableGet(&curr));
  auto type = wasm.getTable(table)->type;
  push(builder.makeTableGet(table, curr.index, type));
  return Ok{};
}

Result<> IRBuilder::makeTableSet(Name table) {
  TableSet curr;
  curr.table = table;
  CHECK_ERR(visitTableSet(&curr));
  push(builder.makeTableSet(table, curr.index, curr.value));
  return Ok{};
}

Result<> IRBuilder::makeTableSize(Name table) {
  push(builder.makeTableSize(table));
  return Ok{};
}

Result<> IRBuilder::makeTableGrow(Name table) {
  TableGrow curr;
  curr.table = table;
  CHECK_ERR(visitTableGrow(&curr));
  push(builder.makeTableGrow(table, curr.value, curr.delta));
  return Ok{};
}

Result<> IRBuilder::makeTableFill(Name table) {
  TableFill curr;
  curr.table = table;
  CHECK_ERR(visitTableFill(&curr));
  push(builder.makeTableFill(table, curr.dest, curr.value, curr.size));
  return Ok{};
}

Result<> IRBuilder::makeTableCopy(Name destTable, Name srcTable) {
  TableCopy curr;
  CHECK_ERR(visitTableCopy(&curr));
  push(builder.makeTableCopy(
    curr.dest, curr.source, curr.size, destTable, srcTable));
  return Ok{};
}

Result<> IRBuilder::makeTableInit(Name elem, Name table) {
  TableInit curr;
  curr.table = table;
  CHECK_ERR(visitTableInit(&curr));
  push(builder.makeTableInit(elem, curr.dest, curr.offset, curr.size, table));
  return Ok{};
}

Result<> IRBuilder::makeTry(Name label, Signature sig) {
  auto* tryy = wasm.allocator.alloc<Try>();
  tryy->type = sig.results;
  return visitTryStart(tryy, label, sig.params);
}

Result<> IRBuilder::makeTryTable(Name label,
                                 Signature sig,
                                 const std::vector<Name>& tags,
                                 const std::vector<Index>& labels,
                                 const std::vector<bool>& isRefs) {
  auto* trytable = wasm.allocator.alloc<TryTable>();
  trytable->type = sig.results;
  trytable->catchTags.set(tags);
  trytable->catchRefs.set(isRefs);
  trytable->catchDests.reserve(labels.size());
  for (auto label : labels) {
    auto name = getLabelName(label);
    CHECK_ERR(name);
    trytable->catchDests.push_back(*name);
  }
  return visitTryTableStart(trytable, label, sig.params);
}

Result<> IRBuilder::makeThrow(Name tag) {
  Throw curr(wasm.allocator);
  curr.tag = tag;
  curr.operands.resize(wasm.getTag(tag)->sig.params.size());
  CHECK_ERR(visitThrow(&curr));
  push(builder.makeThrow(tag, curr.operands));
  return Ok{};
}

Result<> IRBuilder::makeRethrow(Index label) {
  // Rethrow references `Try` labels directly, just like `delegate`.
  auto name = getDelegateLabelName(label);
  CHECK_ERR(name);
  push(builder.makeRethrow(*name));
  return Ok{};
}

Result<> IRBuilder::makeThrowRef() {
  ThrowRef curr;
  CHECK_ERR(visitThrowRef(&curr));
  push(builder.makeThrowRef(curr.exnref));
  return Ok{};
}

Result<> IRBuilder::makeTupleMake(uint32_t arity) {
  if (arity < 2) {
    return Err{"tuple arity must be at least 2"};
  }
  TupleMake curr(wasm.allocator);
  curr.operands.resize(arity);
  CHECK_ERR(visitTupleMake(&curr));
  push(builder.makeTupleMake(curr.operands));
  return Ok{};
}

Result<> IRBuilder::makeTupleExtract(uint32_t arity, uint32_t index) {
  if (index >= arity) {
    return Err{"tuple index out of bounds"};
  }
  if (arity < 2) {
    return Err{"tuple arity must be at least 2"};
  }
  TupleExtract curr;
  CHECK_ERR(ChildPopper{*this}.visitTupleExtract(&curr, arity));
  push(builder.makeTupleExtract(curr.tuple, index));
  return Ok{};
}

Result<> IRBuilder::makeTupleDrop(uint32_t arity) {
  if (arity < 2) {
    return Err{"tuple arity must be at least 2"};
  }
  Drop curr;
  CHECK_ERR(ChildPopper{*this}.visitDrop(&curr, arity));
  push(builder.makeDrop(curr.value));
  return Ok{};
}

Result<> IRBuilder::makeRefI31(Shareability share) {
  RefI31 curr;
  CHECK_ERR(visitRefI31(&curr));
  push(builder.makeRefI31(curr.value, share));
  return Ok{};
}

Result<> IRBuilder::makeI31Get(bool signed_) {
  I31Get curr;
  CHECK_ERR(visitI31Get(&curr));
  push(builder.makeI31Get(curr.i31, signed_));
  return Ok{};
}

Result<> IRBuilder::makeCallRef(HeapType type, bool isReturn) {
  CallRef curr(wasm.allocator);
  if (!type.isSignature()) {
    return Err{"expected function type"};
  }
  auto sig = type.getSignature();
  curr.operands.resize(type.getSignature().params.size());
  CHECK_ERR(ChildPopper{*this}.visitCallRef(&curr, type));
  CHECK_ERR(validateTypeAnnotation(type, curr.target));
  push(builder.makeCallRef(curr.target, curr.operands, sig.results, isReturn));
  return Ok{};
}

Result<> IRBuilder::makeRefTest(Type type) {
  RefTest curr;
  curr.castType = type;
  CHECK_ERR(visitRefTest(&curr));
  push(builder.makeRefTest(curr.ref, type));
  return Ok{};
}

Result<> IRBuilder::makeRefCast(Type type) {
  RefCast curr;
  curr.type = type;
  CHECK_ERR(visitRefCast(&curr));
  push(builder.makeRefCast(curr.ref, type));
  return Ok{};
}

Result<> IRBuilder::makeBrOn(Index label, BrOnOp op, Type in, Type out) {
  BrOn curr;
  curr.op = op;
  curr.castType = out;
  CHECK_ERR(visitBrOn(&curr));
  if (out != Type::none) {
    if (!Type::isSubType(out, in)) {
      return Err{"output type is not a subtype of the input type"};
    }
    if (!Type::isSubType(curr.ref->type, in)) {
      return Err{"expected input to match input type annotation"};
    }
  }
  auto name = getLabelName(label);
  CHECK_ERR(name);
  push(builder.makeBrOn(op, *name, curr.ref, out));
  return Ok{};
}

Result<> IRBuilder::makeStructNew(HeapType type) {
  StructNew curr(wasm.allocator);
  curr.type = Type(type, NonNullable);
  // Differentiate from struct.new_default with a non-empty expression list.
  curr.operands.resize(type.getStruct().fields.size());
  CHECK_ERR(visitStructNew(&curr));
  push(builder.makeStructNew(type, std::move(curr.operands)));
  return Ok{};
}

Result<> IRBuilder::makeStructNewDefault(HeapType type) {
  push(builder.makeStructNew(type, {}));
  return Ok{};
}

Result<> IRBuilder::makeStructGet(HeapType type,
                                  Index field,
                                  bool signed_,
                                  MemoryOrder order) {
  const auto& fields = type.getStruct().fields;
  StructGet curr;
  CHECK_ERR(ChildPopper{*this}.visitStructGet(&curr, type));
  CHECK_ERR(validateTypeAnnotation(type, curr.ref));
  push(
    builder.makeStructGet(field, curr.ref, fields[field].type, signed_, order));
  return Ok{};
}

Result<>
IRBuilder::makeStructSet(HeapType type, Index field, MemoryOrder order) {
  StructSet curr;
  curr.index = field;
  CHECK_ERR(ChildPopper{*this}.visitStructSet(&curr, type));
  CHECK_ERR(validateTypeAnnotation(type, curr.ref));
  push(builder.makeStructSet(field, curr.ref, curr.value, order));
  return Ok{};
}

Result<> IRBuilder::makeArrayNew(HeapType type) {
  ArrayNew curr;
  curr.type = Type(type, NonNullable);
  // Differentiate from array.new_default with dummy initializer.
  curr.init = (Expression*)0x01;
  CHECK_ERR(visitArrayNew(&curr));
  push(builder.makeArrayNew(type, curr.size, curr.init));
  return Ok{};
}

Result<> IRBuilder::makeArrayNewDefault(HeapType type) {
  ArrayNew curr;
  curr.init = nullptr;
  CHECK_ERR(visitArrayNew(&curr));
  push(builder.makeArrayNew(type, curr.size));
  return Ok{};
}

Result<> IRBuilder::makeArrayNewData(HeapType type, Name data) {
  ArrayNewData curr;
  CHECK_ERR(visitArrayNewData(&curr));
  push(builder.makeArrayNewData(type, data, curr.offset, curr.size));
  return Ok{};
}

Result<> IRBuilder::makeArrayNewElem(HeapType type, Name elem) {
  ArrayNewElem curr;
  CHECK_ERR(visitArrayNewElem(&curr));
  push(builder.makeArrayNewElem(type, elem, curr.offset, curr.size));
  return Ok{};
}

Result<> IRBuilder::makeArrayNewFixed(HeapType type, uint32_t arity) {
  ArrayNewFixed curr(wasm.allocator);
  curr.type = Type(type, NonNullable);
  curr.values.resize(arity);
  CHECK_ERR(visitArrayNewFixed(&curr));
  push(builder.makeArrayNewFixed(type, curr.values));
  return Ok{};
}

Result<> IRBuilder::makeArrayGet(HeapType type, bool signed_) {
  ArrayGet curr;
  CHECK_ERR(ChildPopper{*this}.visitArrayGet(&curr, type));
  CHECK_ERR(validateTypeAnnotation(type, curr.ref));
  push(builder.makeArrayGet(
    curr.ref, curr.index, type.getArray().element.type, signed_));
  return Ok{};
}

Result<> IRBuilder::makeArraySet(HeapType type) {
  ArraySet curr;
  CHECK_ERR(ChildPopper{*this}.visitArraySet(&curr, type));
  CHECK_ERR(validateTypeAnnotation(type, curr.ref));
  push(builder.makeArraySet(curr.ref, curr.index, curr.value));
  return Ok{};
}

Result<> IRBuilder::makeArrayLen() {
  ArrayLen curr;
  CHECK_ERR(visitArrayLen(&curr));
  push(builder.makeArrayLen(curr.ref));
  return Ok{};
}

Result<> IRBuilder::makeArrayCopy(HeapType destType, HeapType srcType) {
  ArrayCopy curr;
  CHECK_ERR(ChildPopper{*this}.visitArrayCopy(&curr, destType, srcType));
  CHECK_ERR(validateTypeAnnotation(destType, curr.destRef));
  CHECK_ERR(validateTypeAnnotation(srcType, curr.srcRef));
  push(builder.makeArrayCopy(
    curr.destRef, curr.destIndex, curr.srcRef, curr.srcIndex, curr.length));
  return Ok{};
}

Result<> IRBuilder::makeArrayFill(HeapType type) {
  ArrayFill curr;
  CHECK_ERR(ChildPopper{*this}.visitArrayFill(&curr, type));
  CHECK_ERR(validateTypeAnnotation(type, curr.ref));
  push(builder.makeArrayFill(curr.ref, curr.index, curr.value, curr.size));
  return Ok{};
}

Result<> IRBuilder::makeArrayInitData(HeapType type, Name data) {
  ArrayInitData curr;
  CHECK_ERR(ChildPopper{*this}.visitArrayInitData(&curr, type));
  CHECK_ERR(validateTypeAnnotation(type, curr.ref));
  push(builder.makeArrayInitData(
    data, curr.ref, curr.index, curr.offset, curr.size));
  return Ok{};
}

Result<> IRBuilder::makeArrayInitElem(HeapType type, Name elem) {
  // Validate the elem type, too, before we potentially forget the type
  // annotation.
  if (!type.isArray()) {
    return Err{"expected array type annotation on array.init_elem"};
  }
  if (!Type::isSubType(wasm.getElementSegment(elem)->type,
                       type.getArray().element.type)) {
    return Err{"element segment type must be a subtype of array element type "
               "on array.init_elem"};
  }
  ArrayInitElem curr;
  CHECK_ERR(ChildPopper{*this}.visitArrayInitElem(&curr, type));
  CHECK_ERR(validateTypeAnnotation(type, curr.ref));
  push(builder.makeArrayInitElem(
    elem, curr.ref, curr.index, curr.offset, curr.size));
  return Ok{};
}

Result<> IRBuilder::makeRefAs(RefAsOp op) {
  RefAs curr;
  curr.op = op;
  CHECK_ERR(visitRefAs(&curr));
  push(builder.makeRefAs(op, curr.value));
  return Ok{};
}

Result<> IRBuilder::makeStringNew(StringNewOp op) {
  StringNew curr;
  curr.op = op;
  if (op == StringNewFromCodePoint) {
    CHECK_ERR(visitStringNew(&curr));
    push(builder.makeStringNew(op, curr.ref));
    return Ok{};
  }
  // There's no type annotation on these instructions due to a bug in the
  // stringref proposal, so we just fudge it and pass `array` instead of a
  // defined heap type. This will allow us to pop a child with an invalid
  // array type, but that's just too bad.
  CHECK_ERR(ChildPopper{*this}.visitStringNew(&curr, HeapType::array));
  push(builder.makeStringNew(op, curr.ref, curr.start, curr.end));
  return Ok{};
}

Result<> IRBuilder::makeStringConst(Name string) {
  push(builder.makeStringConst(string));
  return Ok{};
}

Result<> IRBuilder::makeStringMeasure(StringMeasureOp op) {
  StringMeasure curr;
  curr.op = op;
  CHECK_ERR(visitStringMeasure(&curr));
  push(builder.makeStringMeasure(op, curr.ref));
  return Ok{};
}

Result<> IRBuilder::makeStringEncode(StringEncodeOp op) {
  StringEncode curr;
  curr.op = op;
  // There's no type annotation on these instructions due to a bug in the
  // stringref proposal, so we just fudge it and pass `array` instead of a
  // defined heap type. This will allow us to pop a child with an invalid
  // array type, but that's just too bad.
  CHECK_ERR(ChildPopper{*this}.visitStringEncode(&curr, HeapType::array));
  push(builder.makeStringEncode(op, curr.str, curr.array, curr.start));
  return Ok{};
}

Result<> IRBuilder::makeStringConcat() {
  StringConcat curr;
  CHECK_ERR(visitStringConcat(&curr));
  push(builder.makeStringConcat(curr.left, curr.right));
  return Ok{};
}

Result<> IRBuilder::makeStringEq(StringEqOp op) {
  StringEq curr;
  CHECK_ERR(visitStringEq(&curr));
  push(builder.makeStringEq(op, curr.left, curr.right));
  return Ok{};
}

Result<> IRBuilder::makeStringWTF16Get() {
  StringWTF16Get curr;
  CHECK_ERR(visitStringWTF16Get(&curr));
  push(builder.makeStringWTF16Get(curr.ref, curr.pos));
  return Ok{};
}

Result<> IRBuilder::makeStringSliceWTF() {
  StringSliceWTF curr;
  CHECK_ERR(visitStringSliceWTF(&curr));
  push(builder.makeStringSliceWTF(curr.ref, curr.start, curr.end));
  return Ok{};
}

Result<> IRBuilder::makeContBind(HeapType contTypeBefore,
                                 HeapType contTypeAfter) {
  if (!contTypeBefore.isContinuation() || !contTypeAfter.isContinuation()) {
    return Err{"expected continuation types"};
  }
  ContBind curr(wasm.allocator);
  curr.contTypeBefore = contTypeBefore;
  curr.contTypeAfter = contTypeAfter;
  size_t paramsBefore =
    contTypeBefore.getContinuation().type.getSignature().params.size();
  size_t paramsAfter =
    contTypeAfter.getContinuation().type.getSignature().params.size();
  if (paramsBefore < paramsAfter) {
    return Err{"incompatible continuation types in cont.bind: source type " +
               contTypeBefore.toString() +
               " has fewer parameters than destination " +
               contTypeAfter.toString()};
  }
  curr.operands.resize(paramsBefore - paramsAfter);
  CHECK_ERR(visitContBind(&curr));

  std::vector<Expression*> operands(curr.operands.begin(), curr.operands.end());
  push(
    builder.makeContBind(contTypeBefore, contTypeAfter, operands, curr.cont));
  return Ok{};
}

Result<> IRBuilder::makeContNew(HeapType ct) {
  if (!ct.isContinuation()) {
    return Err{"expected continuation type"};
  }
  ContNew curr;
  curr.contType = ct;
  CHECK_ERR(visitContNew(&curr));

  push(builder.makeContNew(ct, curr.func));
  return Ok{};
}

Result<> IRBuilder::makeResume(HeapType ct,
                               const std::vector<Name>& tags,
                               const std::vector<Index>& labels) {
  if (!ct.isContinuation()) {
    return Err{"expected continuation type"};
  }
  Resume curr(wasm.allocator);
  curr.contType = ct;
  curr.operands.resize(ct.getContinuation().type.getSignature().params.size());
  CHECK_ERR(visitResume(&curr));

  std::vector<Name> labelNames;
  labelNames.reserve(labels.size());
  for (auto label : labels) {
    auto name = getLabelName(label);
    CHECK_ERR(name);
    labelNames.push_back(*name);
  }
  std::vector<Expression*> operands(curr.operands.begin(), curr.operands.end());
  push(builder.makeResume(ct, tags, labelNames, operands, curr.cont));
  return Ok{};
}

Result<> IRBuilder::makeSuspend(Name tag) {
  Suspend curr(wasm.allocator);
  curr.tag = tag;
  curr.operands.resize(wasm.getTag(tag)->sig.params.size());
  CHECK_ERR(visitSuspend(&curr));

  std::vector<Expression*> operands(curr.operands.begin(), curr.operands.end());
  push(builder.makeSuspend(tag, operands));
  return Ok{};
}

} // namespace wasm