1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
/*
* Copyright 2018 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Operations on Stack IR.
//
#include "ir/branch-utils.h"
#include "ir/iteration.h"
#include "ir/local-graph.h"
#include "pass.h"
#include "wasm-stack.h"
#include "wasm.h"
namespace wasm {
StackIROptimizer::StackIROptimizer(Function* func,
StackIR& insts,
const PassOptions& passOptions,
FeatureSet features)
: func(func), insts(insts), passOptions(passOptions), features(features) {}
void StackIROptimizer::run() {
dce();
// FIXME: local2Stack is currently rather slow (due to localGraph),
// so for now run it only when really optimizing
if (passOptions.optimizeLevel >= 3 || passOptions.shrinkLevel >= 1) {
local2Stack();
}
removeUnneededBlocks();
dce();
vacuum();
}
void StackIROptimizer::dce() {
// Remove code after an unreachable instruction: anything after it, up to the
// next control flow barrier, can simply be removed.
bool inUnreachableCode = false;
for (Index i = 0; i < insts.size(); i++) {
auto* inst = insts[i];
if (!inst) {
continue;
}
if (inUnreachableCode) {
// Does the unreachable code end here?
if (isControlFlowBarrier(inst)) {
inUnreachableCode = false;
} else {
// We can remove this.
removeAt(i);
}
} else if (inst->type == Type::unreachable) {
inUnreachableCode = true;
}
}
// Remove code before an Unreachable. Consider this:
//
// (drop
// ..
// )
// (unreachable)
//
// The drop is not needed, as the unreachable puts the stack in the
// polymorphic state anyhow. Note that we don't need to optimize anything
// other than a drop here, as in general the Binaryen IR DCE pass will handle
// everything else. A drop followed by an unreachable is the only thing that
// pass cannot handle, as the structured form of Binaryen IR does not allow
// removing such a drop, and so we can only do it here in StackIR.
//
// TODO: We can look even further back, say if there is another drop of
// something before, then we can remove that drop as well. To do that
// we'd need to inspect the stack going backwards.
for (Index i = 1; i < insts.size(); i++) {
auto* inst = insts[i];
if (!inst || inst->op != StackInst::Basic ||
!inst->origin->is<Unreachable>()) {
continue;
}
// Look back past nulls.
Index j = i - 1;
while (j > 0 && !insts[j]) {
j--;
}
auto*& prev = insts[j];
if (prev && prev->op == StackInst::Basic && prev->origin->is<Drop>()) {
prev = nullptr;
}
}
}
// Remove obviously-unneeded code.
void StackIROptimizer::vacuum() {
// In the wasm binary format a nop is never needed. (In Binaryen IR, in
// comparison, it is necessary e.g. in a function body or an if arm.)
//
// It is especially important to remove nops because we add nops when we
// read wasm into Binaryen IR. That is, this avoids a potential increase in
// code size.
for (Index i = 0; i < insts.size(); i++) {
auto*& inst = insts[i];
if (inst && inst->origin->is<Nop>()) {
inst = nullptr;
}
}
}
// If ordered properly, we can avoid a local.set/local.get pair,
// and use the value directly from the stack, for example
// [..produce a value on the stack..]
// local.set $x
// [..much code..]
// local.get $x
// call $foo ;; use the value, foo(value)
// As long as the code in between does not modify $x, and has
// no control flow branching out, we can remove both the set
// and the get.
void StackIROptimizer::local2Stack() {
// We use the localGraph to tell us if a get-set pair is indeed a set that is
// read by that get, and only that get. Note that we run this on Binaryen IR,
// so we are assuming that no previous opt has changed the interaction of
// local operations.
//
// We use a lazy graph here as we only query in the rare case when we find a
// set/get pair that looks optimizable.
LazyLocalGraph localGraph(func);
// The binary writing of StringWTF16Get and StringSliceWTF is optimized to use
// fewer scratch locals when their operands are already LocalGets. To avoid
// interfering with that optimization, we have to avoid removing such
// LocalGets.
auto deferredGets = findStringViewDeferredGets();
// We maintain a stack of relevant values. This contains:
// * a null for each actual value that the value stack would have
// * an index of each LocalSet that *could* be on the value
// stack at that location.
const Index null = -1;
std::vector<Index> values;
// We also maintain a stack of values vectors for control flow,
// saving the stack as we enter and restoring it when we exit.
std::vector<std::vector<Index>> savedValues;
#ifdef STACK_OPT_DEBUG
std::cout << "func: " << func->name << '\n' << insts << '\n';
#endif
for (Index instIndex = 0; instIndex < insts.size(); instIndex++) {
auto* inst = insts[instIndex];
if (!inst) {
continue;
}
// First, consume values from the stack as required.
auto consumed = getNumConsumedValues(inst);
#ifdef STACK_OPT_DEBUG
std::cout << " " << instIndex << " : " << *inst << ", " << values.size()
<< " on stack, will consume " << consumed << "\n ";
for (auto s : values)
std::cout << s << ' ';
std::cout << '\n';
#endif
// TODO: currently we run dce before this, but if we didn't, we'd need
// to handle unreachable code here - it's ok to pop multiple values
// there even if the stack is at size 0.
while (consumed > 0) {
assert(values.size() > 0);
// Whenever we hit a possible stack value, kill it - it would
// be consumed here, so we can never optimize to it.
while (values.back() != null) {
values.pop_back();
assert(values.size() > 0);
}
// Finally, consume the actual value that is consumed here.
values.pop_back();
consumed--;
}
// After consuming, we can see what to do with this. First, handle
// control flow.
if (isControlFlowBegin(inst)) {
// Save the stack for when we end this control flow.
savedValues.push_back(values); // TODO: optimize copies
values.clear();
} else if (isControlFlowEnd(inst)) {
assert(!savedValues.empty());
values = savedValues.back();
savedValues.pop_back();
} else if (isControlFlow(inst)) {
// Otherwise, in the middle of control flow, just clear it
values.clear();
}
// This is something we should handle, look into it.
if (inst->type.isConcrete()) {
bool optimized = false;
// Do not optimize multivalue locals, since those will be better
// optimized when they are visited in the binary writer and this
// optimization would intefere with that one.
if (auto* get = inst->origin->dynCast<LocalGet>();
get && inst->type.isSingle() && !deferredGets.count(get)) {
// Use another local to clarify what instIndex means in this scope.
auto getIndex = instIndex;
// This is a potential optimization opportunity! See if we
// can reach the set.
if (values.size() > 0) {
Index j = values.size() - 1;
while (1) {
// If there's an actual value in the way, we've failed.
auto setIndex = values[j];
if (setIndex == null) {
break;
}
auto* set = insts[setIndex]->origin->cast<LocalSet>();
if (set->index == get->index) {
// This might be a proper set-get pair, where the set is
// used by this get and nothing else, check that.
auto& sets = localGraph.getSets(get);
if (sets.size() == 1 && *sets.begin() == set) {
auto& setInfluences = localGraph.getSetInfluences(set);
// If this has the proper value of 1, also do the potentially-
// expensive check of whether we can remove this pair at all.
if (setInfluences.size() == 1 &&
canRemoveSetGetPair(setIndex, getIndex)) {
assert(*setInfluences.begin() == get);
// Do it! The set and the get can go away, the proper
// value is on the stack.
#ifdef STACK_OPT_DEBUG
std::cout << " stackify the get\n";
#endif
insts[setIndex] = nullptr;
insts[getIndex] = nullptr;
// Continuing on from here, replace this on the stack
// with a null, representing a regular value. We
// keep possible values above us active - they may
// be optimized later, as they would be pushed after
// us, and used before us, so there is no conflict.
values[j] = null;
optimized = true;
break;
}
}
}
// We failed here. Can we look some more?
if (j == 0) {
break;
}
j--;
}
}
}
if (!optimized) {
// This is an actual regular value on the value stack.
values.push_back(null);
}
} else if (inst->origin->is<LocalSet>() && inst->type == Type::none) {
// This set is potentially optimizable later, add to stack.
values.push_back(instIndex);
}
}
}
// There may be unnecessary blocks we can remove: blocks without arriving
// branches are always ok to remove.
// TODO: A branch to a block in an if body can become a branch to that if body.
void StackIROptimizer::removeUnneededBlocks() {
// First, find all branch targets.
std::unordered_set<Name> targets;
for (auto*& inst : insts) {
if (inst) {
BranchUtils::operateOnScopeNameUses(
inst->origin, [&](Name& name) { targets.insert(name); });
}
}
// Remove untargeted blocks.
for (auto*& inst : insts) {
if (!inst) {
continue;
}
if (auto* block = inst->origin->dynCast<Block>()) {
if (!block->name.is() || !targets.count(block->name)) {
// TODO optimize, maybe run remove-unused-names
inst = nullptr;
}
}
}
}
// A control flow "barrier" - a point where stack machine
// unreachability ends.
bool StackIROptimizer::isControlFlowBarrier(StackInst* inst) {
switch (inst->op) {
case StackInst::BlockEnd:
case StackInst::IfElse:
case StackInst::IfEnd:
case StackInst::LoopEnd:
case StackInst::Catch:
case StackInst::CatchAll:
case StackInst::Delegate:
case StackInst::TryEnd:
case StackInst::TryTableEnd: {
return true;
}
default: {
return false;
}
}
}
// A control flow beginning.
bool StackIROptimizer::isControlFlowBegin(StackInst* inst) {
switch (inst->op) {
case StackInst::BlockBegin:
case StackInst::IfBegin:
case StackInst::LoopBegin:
case StackInst::TryBegin:
case StackInst::TryTableBegin: {
return true;
}
default: {
return false;
}
}
}
// A control flow ending.
bool StackIROptimizer::isControlFlowEnd(StackInst* inst) {
switch (inst->op) {
case StackInst::BlockEnd:
case StackInst::IfEnd:
case StackInst::LoopEnd:
case StackInst::TryEnd:
case StackInst::Delegate:
case StackInst::TryTableEnd: {
return true;
}
default: {
return false;
}
}
}
bool StackIROptimizer::isControlFlow(StackInst* inst) {
return inst->op != StackInst::Basic;
}
// Remove the instruction at index i. If the instruction
// is control flow, and so has been expanded to multiple
// instructions, remove them as well.
void StackIROptimizer::removeAt(Index i) {
auto* inst = insts[i];
insts[i] = nullptr;
if (inst->op == StackInst::Basic) {
return; // that was it
}
auto* origin = inst->origin;
while (1) {
i++;
assert(i < insts.size());
inst = insts[i];
insts[i] = nullptr;
if (inst && inst->origin == origin && isControlFlowEnd(inst)) {
return; // that's it, we removed it all
}
}
}
Index StackIROptimizer::getNumConsumedValues(StackInst* inst) {
if (isControlFlow(inst)) {
// If consumes 1; that's it.
if (inst->op == StackInst::IfBegin) {
return 1;
}
return 0;
}
// Otherwise, for basic instructions, just count the expression children.
return ChildIterator(inst->origin).children.size();
}
// Given a pair of a local.set and local.get, see if we can remove them
// without breaking validation. Specifically, we must keep sets of non-
// nullable locals that dominate a get until the end of the block, such as
// here:
//
// local.set 0 ;; Can we remove
// local.get 0 ;; this pair?
// if
// local.set 0
// else
// local.set 0
// end
// local.get 0 ;; This get poses a problem.
//
// Logically the 2nd&3rd sets ensure a value is applied to the local before we
// read it, but the validation rules only track each set until the end of its
// scope, so the 1st set (before the if, in the pair) is necessary.
//
// The logic below is related to LocalStructuralDominance, but sharing code
// with it is difficult as this uses StackIR and not BinaryenIR, and it checks
// a particular set/get pair.
//
// We are given the indexes of the set and get instructions in |insts|.
bool StackIROptimizer::canRemoveSetGetPair(Index setIndex, Index getIndex) {
// The set must be before the get.
assert(setIndex < getIndex);
auto* set = insts[setIndex]->origin->cast<LocalSet>();
auto localType = func->getLocalType(set->index);
// Note we do not need to handle tuples here, as the parent ignores them
// anyhow (hence we can check non-nullability instead of non-
// defaultability).
assert(localType.isSingle());
if (func->isParam(set->index) || !localType.isNonNullable()) {
// This local cannot pose a problem for validation (params are always
// initialized, and it is ok if nullable locals are uninitialized).
return true;
}
// Track the depth (in block/if/loop/etc. scopes) relative to our starting
// point. Anything less deep than that is not interesting, as we can only
// help things at our depth or deeper to validate.
Index currDepth = 0;
// Look for a different get than the one in getIndex (since that one is
// being removed) which would stop validating without the set. While doing
// so, note other sets that ensure validation even if our set is removed. We
// track those in this stack of booleans, one for each scope, which is true
// if another sets covers us and ours is not needed.
//
// We begin in the current scope and with no other set covering us.
std::vector<bool> coverStack = {false};
// Track the total number of covers as well, for quick checking below.
Index covers = 0;
// TODO: We could look before us as well, but then we might end up scanning
// much of the function every time.
for (Index i = setIndex + 1; i < insts.size(); i++) {
auto* inst = insts[i];
if (!inst) {
continue;
}
if (isControlFlowBegin(inst)) {
// A new scope begins.
currDepth++;
coverStack.push_back(false);
} else if (isControlFlowEnd(inst)) {
if (currDepth == 0) {
// Less deep than the start, so we found no problem.
return true;
}
currDepth--;
if (coverStack.back()) {
// A cover existed in the scope which ended.
covers--;
}
coverStack.pop_back();
} else if (isControlFlowBarrier(inst)) {
// A barrier, like the else in an if-else, not only ends a scope but
// opens a new one.
if (currDepth == 0) {
// Another scope with the same depth begins, but ours ended, so stop.
return true;
}
if (coverStack.back()) {
// A cover existed in the scope which ended.
covers--;
}
coverStack.back() = false;
} else if (auto* otherSet = inst->origin->dynCast<LocalSet>()) {
// We are covered in this scope henceforth.
if (otherSet->index == set->index) {
if (!coverStack.back()) {
covers++;
if (currDepth == 0) {
// We have a cover at depth 0, so everything from here on out
// will be covered.
return true;
}
coverStack.back() = true;
}
}
} else if (auto* otherGet = inst->origin->dynCast<LocalGet>()) {
if (otherGet->index == set->index && i != getIndex && !covers) {
// We found a get that might be a problem: it uses the same index, but
// is not the get we were told about, and no other set covers us.
return false;
}
}
}
// No problem.
return true;
}
std::unordered_set<LocalGet*> StackIROptimizer::findStringViewDeferredGets() {
std::unordered_set<LocalGet*> deferred;
auto note = [&](Expression* e) {
if (auto* get = e->dynCast<LocalGet>()) {
deferred.insert(get);
}
};
for (auto* inst : insts) {
if (!inst) {
continue;
}
if (auto* curr = inst->origin->dynCast<StringWTF16Get>()) {
note(curr->pos);
} else if (auto* curr = inst->origin->dynCast<StringSliceWTF>()) {
note(curr->start);
note(curr->end);
}
}
return deferred;
}
} // namespace wasm
|