1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
|
/*
* Copyright 2017 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <mutex>
#include <set>
#include <sstream>
#include <unordered_set>
#include "wasm.h"
#include "wasm-printing.h"
#include "wasm-validator.h"
#include "ir/utils.h"
#include "ir/branch-utils.h"
#include "ir/features.h"
#include "ir/module-utils.h"
#include "support/colors.h"
namespace wasm {
// Print anything that can be streamed to an ostream
template<typename T,
typename std::enable_if<
!std::is_base_of<Expression, typename std::remove_pointer<T>::type>::value
>::type* = nullptr>
inline std::ostream& printModuleComponent(T curr, std::ostream& stream) {
stream << curr << std::endl;
return stream;
}
// Extra overload for Expressions, to print type info too
inline std::ostream& printModuleComponent(Expression* curr, std::ostream& stream) {
WasmPrinter::printExpression(curr, stream, false, true) << std::endl;
return stream;
}
// For parallel validation, we have a helper struct for coordination
struct ValidationInfo {
bool validateWeb;
bool validateGlobally;
FeatureSet features;
bool quiet;
std::atomic<bool> valid;
// a stream of error test for each function. we print in the right order at
// the end, for deterministic output
// note errors are rare/unexpected, so it's ok to use a slow mutex here
std::mutex mutex;
std::unordered_map<Function*, std::unique_ptr<std::ostringstream>> outputs;
ValidationInfo() {
valid.store(true);
}
std::ostringstream& getStream(Function* func) {
std::unique_lock<std::mutex> lock(mutex);
auto iter = outputs.find(func);
if (iter != outputs.end()) return *(iter->second.get());
auto& ret = outputs[func] = make_unique<std::ostringstream>();
return *ret.get();
}
// printing and error handling support
template<typename T, typename S>
std::ostream& fail(S text, T curr, Function* func) {
valid.store(false);
auto& stream = getStream(func);
if (quiet) return stream;
auto& ret = printFailureHeader(func);
ret << text << ", on \n";
return printModuleComponent(curr, ret);
}
std::ostream& printFailureHeader(Function* func) {
auto& stream = getStream(func);
if (quiet) return stream;
Colors::red(stream);
if (func) {
stream << "[wasm-validator error in function ";
Colors::green(stream);
stream << func->name;
Colors::red(stream);
stream << "] ";
} else {
stream << "[wasm-validator error in module] ";
}
Colors::normal(stream);
return stream;
}
// checking utilities
template<typename T>
bool shouldBeTrue(bool result, T curr, const char* text, Function* func = nullptr) {
if (!result) {
fail("unexpected false: " + std::string(text), curr, func);
return false;
}
return result;
}
template<typename T>
bool shouldBeFalse(bool result, T curr, const char* text, Function* func = nullptr) {
if (result) {
fail("unexpected true: " + std::string(text), curr, func);
return false;
}
return result;
}
template<typename T, typename S>
bool shouldBeEqual(S left, S right, T curr, const char* text, Function* func = nullptr) {
if (left != right) {
std::ostringstream ss;
ss << left << " != " << right << ": " << text;
fail(ss.str(), curr, func);
return false;
}
return true;
}
template<typename T, typename S>
bool shouldBeEqualOrFirstIsUnreachable(S left, S right, T curr, const char* text, Function* func = nullptr) {
if (left != unreachable && left != right) {
std::ostringstream ss;
ss << left << " != " << right << ": " << text;
fail(ss.str(), curr, func);
return false;
}
return true;
}
template<typename T, typename S>
bool shouldBeUnequal(S left, S right, T curr, const char* text, Function* func = nullptr) {
if (left == right) {
std::ostringstream ss;
ss << left << " == " << right << ": " << text;
fail(ss.str(), curr, func);
return false;
}
return true;
}
void shouldBeIntOrUnreachable(Type ty, Expression* curr, const char* text, Function* func = nullptr) {
switch (ty) {
case i32:
case i64:
case unreachable: {
break;
}
default: fail(text, curr, func);
}
}
};
struct FunctionValidator : public WalkerPass<PostWalker<FunctionValidator>> {
bool isFunctionParallel() override { return true; }
Pass* create() override { return new FunctionValidator(&info); }
bool modifiesBinaryenIR() override { return false; }
ValidationInfo& info;
FunctionValidator(ValidationInfo* info) : info(*info) {}
struct BreakInfo {
enum {
UnsetArity = Index(-1),
PoisonArity = Index(-2)
};
Type type;
Index arity;
BreakInfo() : arity(UnsetArity) {}
BreakInfo(Type type, Index arity) : type(type), arity(arity) {}
bool hasBeenSet() {
// Compare to the impossible value.
return arity != UnsetArity;
}
};
std::unordered_map<Name, BreakInfo> breakInfos;
Type returnType = unreachable; // type used in returns
std::unordered_set<Name> labelNames; // Binaryen IR requires that label names must be unique - IR generators must ensure that
void noteLabelName(Name name);
public:
// visitors
static void visitPreBlock(FunctionValidator* self, Expression** currp) {
auto* curr = (*currp)->cast<Block>();
if (curr->name.is()) self->breakInfos[curr->name];
}
void visitBlock(Block* curr);
static void visitPreLoop(FunctionValidator* self, Expression** currp) {
auto* curr = (*currp)->cast<Loop>();
if (curr->name.is()) self->breakInfos[curr->name];
}
void visitLoop(Loop* curr);
void visitIf(If* curr);
// override scan to add a pre and a post check task to all nodes
static void scan(FunctionValidator* self, Expression** currp) {
PostWalker<FunctionValidator>::scan(self, currp);
auto* curr = *currp;
if (curr->is<Block>()) self->pushTask(visitPreBlock, currp);
if (curr->is<Loop>()) self->pushTask(visitPreLoop, currp);
}
void noteBreak(Name name, Expression* value, Expression* curr);
void visitBreak(Break* curr);
void visitSwitch(Switch* curr);
void visitCall(Call* curr);
void visitCallIndirect(CallIndirect* curr);
void visitGetLocal(GetLocal* curr);
void visitSetLocal(SetLocal* curr);
void visitGetGlobal(GetGlobal* curr);
void visitSetGlobal(SetGlobal* curr);
void visitLoad(Load* curr);
void visitStore(Store* curr);
void visitAtomicRMW(AtomicRMW* curr);
void visitAtomicCmpxchg(AtomicCmpxchg* curr);
void visitAtomicWait(AtomicWait* curr);
void visitAtomicWake(AtomicWake* curr);
void visitSIMDExtract(SIMDExtract* curr);
void visitSIMDReplace(SIMDReplace* curr);
void visitSIMDShuffle(SIMDShuffle* curr);
void visitSIMDBitselect(SIMDBitselect* curr);
void visitSIMDShift(SIMDShift* curr);
void visitBinary(Binary* curr);
void visitUnary(Unary* curr);
void visitSelect(Select* curr);
void visitDrop(Drop* curr);
void visitReturn(Return* curr);
void visitHost(Host* curr);
void visitFunction(Function* curr);
// helpers
private:
std::ostream& getStream() {
return info.getStream(getFunction());
}
template<typename T>
bool shouldBeTrue(bool result, T curr, const char* text) {
return info.shouldBeTrue(result, curr, text, getFunction());
}
template<typename T>
bool shouldBeFalse(bool result, T curr, const char* text) {
return info.shouldBeFalse(result, curr, text, getFunction());
}
template<typename T, typename S>
bool shouldBeEqual(S left, S right, T curr, const char* text) {
return info.shouldBeEqual(left, right, curr, text, getFunction());
}
template<typename T, typename S>
bool shouldBeEqualOrFirstIsUnreachable(S left, S right, T curr, const char* text) {
return info.shouldBeEqualOrFirstIsUnreachable(left, right, curr, text, getFunction());
}
template<typename T, typename S>
bool shouldBeUnequal(S left, S right, T curr, const char* text) {
return info.shouldBeUnequal(left, right, curr, text, getFunction());
}
void shouldBeIntOrUnreachable(Type ty, Expression* curr, const char* text) {
return info.shouldBeIntOrUnreachable(ty, curr, text, getFunction());
}
void validateAlignment(size_t align, Type type, Index bytes, bool isAtomic,
Expression* curr);
void validateMemBytes(uint8_t bytes, Type type, Expression* curr);
};
void FunctionValidator::noteLabelName(Name name) {
if (!name.is()) return;
bool inserted;
std::tie(std::ignore, inserted) = labelNames.insert(name);
shouldBeTrue(inserted, name, "names in Binaryen IR must be unique - IR generators must ensure that");
}
void FunctionValidator::visitBlock(Block* curr) {
// if we are break'ed to, then the value must be right for us
if (curr->name.is()) {
noteLabelName(curr->name);
auto iter = breakInfos.find(curr->name);
assert(iter != breakInfos.end()); // we set it ourselves
auto& info = iter->second;
if (info.hasBeenSet()) {
if (isConcreteType(curr->type)) {
shouldBeTrue(info.arity != 0, curr, "break arities must be > 0 if block has a value");
} else {
shouldBeTrue(info.arity == 0, curr, "break arities must be 0 if block has no value");
}
// none or unreachable means a poison value that we should ignore - if consumed, it will error
if (isConcreteType(info.type) && isConcreteType(curr->type)) {
shouldBeEqual(curr->type, info.type, curr, "block+breaks must have right type if breaks return a value");
}
if (isConcreteType(curr->type) && info.arity && info.type != unreachable) {
shouldBeEqual(curr->type, info.type, curr, "block+breaks must have right type if breaks have arity");
}
shouldBeTrue(info.arity != BreakInfo::PoisonArity, curr, "break arities must match");
if (curr->list.size() > 0) {
auto last = curr->list.back()->type;
if (isConcreteType(last) && info.type != unreachable) {
shouldBeEqual(last, info.type, curr, "block+breaks must have right type if block ends with a reachable value");
}
if (last == none) {
shouldBeTrue(info.arity == Index(0), curr, "if block ends with a none, breaks cannot send a value of any type");
}
}
}
breakInfos.erase(iter);
}
if (curr->list.size() > 1) {
for (Index i = 0; i < curr->list.size() - 1; i++) {
if (!shouldBeTrue(!isConcreteType(curr->list[i]->type), curr, "non-final block elements returning a value must be drop()ed (binaryen's autodrop option might help you)") && !info.quiet) {
getStream() << "(on index " << i << ":\n" << curr->list[i] << "\n), type: " << curr->list[i]->type << "\n";
}
}
}
if (curr->list.size() > 0) {
auto backType = curr->list.back()->type;
if (!isConcreteType(curr->type)) {
shouldBeFalse(isConcreteType(backType), curr, "if block is not returning a value, final element should not flow out a value");
} else {
if (isConcreteType(backType)) {
shouldBeEqual(curr->type, backType, curr, "block with value and last element with value must match types");
} else {
shouldBeUnequal(backType, none, curr, "block with value must not have last element that is none");
}
}
}
if (isConcreteType(curr->type)) {
shouldBeTrue(curr->list.size() > 0, curr, "block with a value must not be empty");
}
}
void FunctionValidator::visitLoop(Loop* curr) {
if (curr->name.is()) {
noteLabelName(curr->name);
auto iter = breakInfos.find(curr->name);
assert(iter != breakInfos.end()); // we set it ourselves
auto& info = iter->second;
if (info.hasBeenSet()) {
shouldBeEqual(info.arity, Index(0), curr, "breaks to a loop cannot pass a value");
}
breakInfos.erase(iter);
}
if (curr->type == none) {
shouldBeFalse(isConcreteType(curr->body->type), curr, "bad body for a loop that has no value");
}
}
void FunctionValidator::visitIf(If* curr) {
shouldBeTrue(curr->condition->type == unreachable || curr->condition->type == i32, curr, "if condition must be valid");
if (!curr->ifFalse) {
shouldBeFalse(isConcreteType(curr->ifTrue->type), curr, "if without else must not return a value in body");
if (curr->condition->type != unreachable) {
shouldBeEqual(curr->type, none, curr, "if without else and reachable condition must be none");
}
} else {
if (curr->type != unreachable) {
shouldBeEqualOrFirstIsUnreachable(curr->ifTrue->type, curr->type, curr, "returning if-else's true must have right type");
shouldBeEqualOrFirstIsUnreachable(curr->ifFalse->type, curr->type, curr, "returning if-else's false must have right type");
} else {
if (curr->condition->type != unreachable) {
shouldBeEqual(curr->ifTrue->type, unreachable, curr, "unreachable if-else must have unreachable true");
shouldBeEqual(curr->ifFalse->type, unreachable, curr, "unreachable if-else must have unreachable false");
}
}
if (isConcreteType(curr->ifTrue->type)) {
shouldBeEqual(curr->type, curr->ifTrue->type, curr, "if type must match concrete ifTrue");
shouldBeEqualOrFirstIsUnreachable(curr->ifFalse->type, curr->ifTrue->type, curr, "other arm must match concrete ifTrue");
}
if (isConcreteType(curr->ifFalse->type)) {
shouldBeEqual(curr->type, curr->ifFalse->type, curr, "if type must match concrete ifFalse");
shouldBeEqualOrFirstIsUnreachable(curr->ifTrue->type, curr->ifFalse->type, curr, "other arm must match concrete ifFalse");
}
}
}
void FunctionValidator::noteBreak(Name name, Expression* value, Expression* curr) {
Type valueType = none;
Index arity = 0;
if (value) {
valueType = value->type;
shouldBeUnequal(valueType, none, curr, "breaks must have a valid value");
arity = 1;
}
auto iter = breakInfos.find(name);
if (!shouldBeTrue(iter != breakInfos.end(), curr, "all break targets must be valid")) return;
auto& info = iter->second;
if (!info.hasBeenSet()) {
info = BreakInfo(valueType, arity);
} else {
if (info.type == unreachable) {
info.type = valueType;
} else if (valueType != unreachable) {
if (valueType != info.type) {
info.type = none; // a poison value that must not be consumed
}
}
if (arity != info.arity) {
info.arity = BreakInfo::PoisonArity;
}
}
}
void FunctionValidator::visitBreak(Break* curr) {
noteBreak(curr->name, curr->value, curr);
if (curr->condition) {
shouldBeTrue(curr->condition->type == unreachable || curr->condition->type == i32, curr, "break condition must be i32");
}
}
void FunctionValidator::visitSwitch(Switch* curr) {
for (auto& target : curr->targets) {
noteBreak(target, curr->value, curr);
}
noteBreak(curr->default_, curr->value, curr);
shouldBeTrue(curr->condition->type == unreachable || curr->condition->type == i32, curr, "br_table condition must be i32");
}
void FunctionValidator::visitCall(Call* curr) {
if (!info.validateGlobally) return;
auto* target = getModule()->getFunctionOrNull(curr->target);
if (!shouldBeTrue(!!target, curr, "call target must exist")) return;
if (!shouldBeTrue(curr->operands.size() == target->params.size(), curr, "call param number must match")) return;
for (size_t i = 0; i < curr->operands.size(); i++) {
if (!shouldBeEqualOrFirstIsUnreachable(curr->operands[i]->type, target->params[i], curr, "call param types must match") && !info.quiet) {
getStream() << "(on argument " << i << ")\n";
}
}
}
void FunctionValidator::visitCallIndirect(CallIndirect* curr) {
if (!info.validateGlobally) return;
auto* type = getModule()->getFunctionTypeOrNull(curr->fullType);
if (!shouldBeTrue(!!type, curr, "call_indirect type must exist")) return;
shouldBeEqualOrFirstIsUnreachable(curr->target->type, i32, curr, "indirect call target must be an i32");
if (!shouldBeTrue(curr->operands.size() == type->params.size(), curr, "call param number must match")) return;
for (size_t i = 0; i < curr->operands.size(); i++) {
if (!shouldBeEqualOrFirstIsUnreachable(curr->operands[i]->type, type->params[i], curr, "call param types must match") && !info.quiet) {
getStream() << "(on argument " << i << ")\n";
}
}
}
void FunctionValidator::visitGetLocal(GetLocal* curr) {
shouldBeTrue(curr->index < getFunction()->getNumLocals(), curr, "get_local index must be small enough");
shouldBeTrue(isConcreteType(curr->type), curr, "get_local must have a valid type - check what you provided when you constructed the node");
shouldBeTrue(curr->type == getFunction()->getLocalType(curr->index), curr, "get_local must have proper type");
}
void FunctionValidator::visitSetLocal(SetLocal* curr) {
shouldBeTrue(curr->index < getFunction()->getNumLocals(), curr, "set_local index must be small enough");
if (curr->value->type != unreachable) {
if (curr->type != none) { // tee is ok anyhow
shouldBeEqualOrFirstIsUnreachable(curr->value->type, curr->type, curr, "set_local type must be correct");
}
shouldBeEqual(getFunction()->getLocalType(curr->index), curr->value->type, curr, "set_local type must match function");
}
}
void FunctionValidator::visitGetGlobal(GetGlobal* curr) {
if (!info.validateGlobally) return;
shouldBeTrue(getModule()->getGlobalOrNull(curr->name), curr, "get_global name must be valid");
}
void FunctionValidator::visitSetGlobal(SetGlobal* curr) {
if (!info.validateGlobally) return;
auto* global = getModule()->getGlobalOrNull(curr->name);
if (shouldBeTrue(global, curr, "set_global name must be valid (and not an import; imports can't be modified)")) {
shouldBeTrue(global->mutable_, curr, "set_global global must be mutable");
shouldBeEqualOrFirstIsUnreachable(curr->value->type, global->type, curr, "set_global value must have right type");
}
}
void FunctionValidator::visitLoad(Load* curr) {
if (curr->isAtomic) {
shouldBeTrue(info.features.hasAtomics(), curr, "Atomic operation (atomics are disabled)");
shouldBeTrue(curr->type == i32 || curr->type == i64 || curr->type == unreachable, curr, "Atomic load should be i32 or i64");
}
if (curr->type == v128) shouldBeTrue(info.features.hasSIMD(), curr, "SIMD operation (SIMD is disabled)");
shouldBeFalse(curr->isAtomic && !getModule()->memory.shared, curr, "Atomic operation with non-shared memory");
validateMemBytes(curr->bytes, curr->type, curr);
validateAlignment(curr->align, curr->type, curr->bytes, curr->isAtomic, curr);
shouldBeEqualOrFirstIsUnreachable(curr->ptr->type, i32, curr, "load pointer type must be i32");
if (curr->isAtomic) {
shouldBeFalse(curr->signed_, curr, "atomic loads must be unsigned");
shouldBeIntOrUnreachable(curr->type, curr, "atomic loads must be of integers");
}
}
void FunctionValidator::visitStore(Store* curr) {
if (curr->isAtomic) {
shouldBeTrue(info.features.hasAtomics(), curr, "Atomic operation (atomics are disabled)");
shouldBeTrue(curr->valueType == i32 || curr->valueType == i64 || curr->valueType == unreachable, curr, "Atomic store should be i32 or i64");
}
if (curr->valueType == v128) shouldBeTrue(info.features.hasSIMD(), curr, "SIMD operation (SIMD is disabled)");
shouldBeFalse(curr->isAtomic && !getModule()->memory.shared, curr, "Atomic operation with non-shared memory");
validateMemBytes(curr->bytes, curr->valueType, curr);
validateAlignment(curr->align, curr->valueType, curr->bytes, curr->isAtomic, curr);
shouldBeEqualOrFirstIsUnreachable(curr->ptr->type, i32, curr, "store pointer type must be i32");
shouldBeUnequal(curr->value->type, none, curr, "store value type must not be none");
shouldBeEqualOrFirstIsUnreachable(curr->value->type, curr->valueType, curr, "store value type must match");
if (curr->isAtomic) {
shouldBeIntOrUnreachable(curr->valueType, curr, "atomic stores must be of integers");
}
}
void FunctionValidator::visitAtomicRMW(AtomicRMW* curr) {
shouldBeTrue(info.features.hasAtomics(), curr, "Atomic operation (atomics are disabled)");
shouldBeFalse(!getModule()->memory.shared, curr, "Atomic operation with non-shared memory");
validateMemBytes(curr->bytes, curr->type, curr);
shouldBeEqualOrFirstIsUnreachable(curr->ptr->type, i32, curr, "AtomicRMW pointer type must be i32");
shouldBeEqualOrFirstIsUnreachable(curr->type, curr->value->type, curr, "AtomicRMW result type must match operand");
shouldBeIntOrUnreachable(curr->type, curr, "Atomic operations are only valid on int types");
}
void FunctionValidator::visitAtomicCmpxchg(AtomicCmpxchg* curr) {
shouldBeTrue(info.features.hasAtomics(), curr, "Atomic operation (atomics are disabled)");
shouldBeFalse(!getModule()->memory.shared, curr, "Atomic operation with non-shared memory");
validateMemBytes(curr->bytes, curr->type, curr);
shouldBeEqualOrFirstIsUnreachable(curr->ptr->type, i32, curr, "cmpxchg pointer type must be i32");
if (curr->expected->type != unreachable && curr->replacement->type != unreachable) {
shouldBeEqual(curr->expected->type, curr->replacement->type, curr, "cmpxchg operand types must match");
}
shouldBeEqualOrFirstIsUnreachable(curr->type, curr->expected->type, curr, "Cmpxchg result type must match expected");
shouldBeEqualOrFirstIsUnreachable(curr->type, curr->replacement->type, curr, "Cmpxchg result type must match replacement");
shouldBeIntOrUnreachable(curr->expected->type, curr, "Atomic operations are only valid on int types");
}
void FunctionValidator::visitAtomicWait(AtomicWait* curr) {
shouldBeTrue(info.features.hasAtomics(), curr, "Atomic operation (atomics are disabled)");
shouldBeFalse(!getModule()->memory.shared, curr, "Atomic operation with non-shared memory");
shouldBeEqualOrFirstIsUnreachable(curr->type, i32, curr, "AtomicWait must have type i32");
shouldBeEqualOrFirstIsUnreachable(curr->ptr->type, i32, curr, "AtomicWait pointer type must be i32");
shouldBeIntOrUnreachable(curr->expected->type, curr, "AtomicWait expected type must be int");
shouldBeEqualOrFirstIsUnreachable(curr->expected->type, curr->expectedType, curr, "AtomicWait expected type must match operand");
shouldBeEqualOrFirstIsUnreachable(curr->timeout->type, i64, curr, "AtomicWait timeout type must be i64");
}
void FunctionValidator::visitAtomicWake(AtomicWake* curr) {
shouldBeTrue(info.features.hasAtomics(), curr, "Atomic operation (atomics are disabled)");
shouldBeFalse(!getModule()->memory.shared, curr, "Atomic operation with non-shared memory");
shouldBeEqualOrFirstIsUnreachable(curr->type, i32, curr, "AtomicWake must have type i32");
shouldBeEqualOrFirstIsUnreachable(curr->ptr->type, i32, curr, "AtomicWake pointer type must be i32");
shouldBeEqualOrFirstIsUnreachable(curr->wakeCount->type, i32, curr, "AtomicWake wakeCount type must be i32");
}
void FunctionValidator::visitSIMDExtract(SIMDExtract* curr) {
shouldBeTrue(info.features.hasSIMD(), curr, "SIMD operation (SIMD is disabled)");
shouldBeEqualOrFirstIsUnreachable(curr->vec->type, v128, curr, "extract_lane must operate on a v128");
Type lane_t = none;
size_t lanes = 0;
switch (curr->op) {
case ExtractLaneSVecI8x16:
case ExtractLaneUVecI8x16: lane_t = i32; lanes = 16; break;
case ExtractLaneSVecI16x8:
case ExtractLaneUVecI16x8: lane_t = i32; lanes = 8; break;
case ExtractLaneVecI32x4: lane_t = i32; lanes = 4; break;
case ExtractLaneVecI64x2: lane_t = i64; lanes = 2; break;
case ExtractLaneVecF32x4: lane_t = f32; lanes = 4; break;
case ExtractLaneVecF64x2: lane_t = f64; lanes = 2; break;
}
shouldBeEqualOrFirstIsUnreachable(curr->type, lane_t, curr, "extract_lane must have same type as vector lane");
shouldBeTrue(curr->index < lanes, curr, "invalid lane index");
}
void FunctionValidator::visitSIMDReplace(SIMDReplace* curr) {
shouldBeTrue(info.features.hasSIMD(), curr, "SIMD operation (SIMD is disabled)");
shouldBeEqualOrFirstIsUnreachable(curr->type, v128, curr, "replace_lane must have type v128");
shouldBeEqualOrFirstIsUnreachable(curr->vec->type, v128, curr, "replace_lane must operate on a v128");
Type lane_t = none;
size_t lanes = 0;
switch (curr->op) {
case ReplaceLaneVecI8x16: lane_t = i32; lanes = 16; break;
case ReplaceLaneVecI16x8: lane_t = i32; lanes = 8; break;
case ReplaceLaneVecI32x4: lane_t = i32; lanes = 4; break;
case ReplaceLaneVecI64x2: lane_t = i64; lanes = 2; break;
case ReplaceLaneVecF32x4: lane_t = f32; lanes = 4; break;
case ReplaceLaneVecF64x2: lane_t = f64; lanes = 2; break;
}
shouldBeEqualOrFirstIsUnreachable(curr->value->type, lane_t, curr, "unexpected value type");
shouldBeTrue(curr->index < lanes, curr, "invalid lane index");
}
void FunctionValidator::visitSIMDShuffle(SIMDShuffle* curr) {
shouldBeTrue(info.features.hasSIMD(), curr, "SIMD operation (SIMD is disabled)");
shouldBeEqualOrFirstIsUnreachable(curr->type, v128, curr, "v128.shuffle must have type v128");
shouldBeEqualOrFirstIsUnreachable(curr->left->type, v128, curr, "expected operand of type v128");
shouldBeEqualOrFirstIsUnreachable(curr->right->type, v128, curr, "expected operand of type v128");
for (uint8_t index : curr->mask) {
shouldBeTrue(index < 32, curr, "Invalid lane index in mask");
}
}
void FunctionValidator::visitSIMDBitselect(SIMDBitselect* curr) {
shouldBeTrue(info.features.hasSIMD(), curr, "SIMD operation (SIMD is disabled)");
shouldBeEqualOrFirstIsUnreachable(curr->type, v128, curr, "v128.bitselect must have type v128");
shouldBeEqualOrFirstIsUnreachable(curr->left->type, v128, curr, "expected operand of type v128");
shouldBeEqualOrFirstIsUnreachable(curr->right->type, v128, curr, "expected operand of type v128");
shouldBeEqualOrFirstIsUnreachable(curr->cond->type, v128, curr, "expected operand of type v128");
}
void FunctionValidator::visitSIMDShift(SIMDShift* curr) {
shouldBeTrue(info.features.hasSIMD(), curr, "SIMD operation (SIMD is disabled)");
shouldBeEqualOrFirstIsUnreachable(curr->type, v128, curr, "vector shift must have type v128");
shouldBeEqualOrFirstIsUnreachable(curr->vec->type, v128, curr, "expected operand of type v128");
shouldBeEqualOrFirstIsUnreachable(curr->shift->type, i32, curr, "expected shift amount to have type i32");
}
void FunctionValidator::validateMemBytes(uint8_t bytes, Type type, Expression* curr) {
switch (type) {
case i32: shouldBeTrue(bytes == 1 || bytes == 2 || bytes == 4, curr, "expected i32 operation to touch 1, 2, or 4 bytes"); break;
case i64: shouldBeTrue(bytes == 1 || bytes == 2 || bytes == 4 || bytes == 8, curr, "expected i64 operation to touch 1, 2, 4, or 8 bytes"); break;
case f32: shouldBeEqual(bytes, uint8_t(4), curr, "expected f32 operation to touch 4 bytes"); break;
case f64: shouldBeEqual(bytes, uint8_t(8), curr, "expected f64 operation to touch 8 bytes"); break;
case v128: shouldBeEqual(bytes, uint8_t(16), curr, "expected v128 operation to touch 16 bytes"); break;
case none: WASM_UNREACHABLE();
case unreachable: break;
}
}
void FunctionValidator::visitBinary(Binary* curr) {
if (curr->left->type != unreachable && curr->right->type != unreachable) {
shouldBeEqual(curr->left->type, curr->right->type, curr, "binary child types must be equal");
}
switch (curr->op) {
case AddInt32:
case SubInt32:
case MulInt32:
case DivSInt32:
case DivUInt32:
case RemSInt32:
case RemUInt32:
case AndInt32:
case OrInt32:
case XorInt32:
case ShlInt32:
case ShrUInt32:
case ShrSInt32:
case RotLInt32:
case RotRInt32:
case EqInt32:
case NeInt32:
case LtSInt32:
case LtUInt32:
case LeSInt32:
case LeUInt32:
case GtSInt32:
case GtUInt32:
case GeSInt32:
case GeUInt32: {
shouldBeEqualOrFirstIsUnreachable(curr->left->type, i32, curr, "i32 op");
break;
}
case AddInt64:
case SubInt64:
case MulInt64:
case DivSInt64:
case DivUInt64:
case RemSInt64:
case RemUInt64:
case AndInt64:
case OrInt64:
case XorInt64:
case ShlInt64:
case ShrUInt64:
case ShrSInt64:
case RotLInt64:
case RotRInt64:
case EqInt64:
case NeInt64:
case LtSInt64:
case LtUInt64:
case LeSInt64:
case LeUInt64:
case GtSInt64:
case GtUInt64:
case GeSInt64:
case GeUInt64: {
shouldBeEqualOrFirstIsUnreachable(curr->left->type, i64, curr, "i64 op");
break;
}
case AddFloat32:
case SubFloat32:
case MulFloat32:
case DivFloat32:
case CopySignFloat32:
case MinFloat32:
case MaxFloat32:
case EqFloat32:
case NeFloat32:
case LtFloat32:
case LeFloat32:
case GtFloat32:
case GeFloat32: {
shouldBeEqualOrFirstIsUnreachable(curr->left->type, f32, curr, "f32 op");
break;
}
case AddFloat64:
case SubFloat64:
case MulFloat64:
case DivFloat64:
case CopySignFloat64:
case MinFloat64:
case MaxFloat64:
case EqFloat64:
case NeFloat64:
case LtFloat64:
case LeFloat64:
case GtFloat64:
case GeFloat64: {
shouldBeEqualOrFirstIsUnreachable(curr->left->type, f64, curr, "f64 op");
break;
}
case EqVecI8x16:
case NeVecI8x16:
case LtSVecI8x16:
case LtUVecI8x16:
case LeSVecI8x16:
case LeUVecI8x16:
case GtSVecI8x16:
case GtUVecI8x16:
case GeSVecI8x16:
case GeUVecI8x16:
case EqVecI16x8:
case NeVecI16x8:
case LtSVecI16x8:
case LtUVecI16x8:
case LeSVecI16x8:
case LeUVecI16x8:
case GtSVecI16x8:
case GtUVecI16x8:
case GeSVecI16x8:
case GeUVecI16x8:
case EqVecI32x4:
case NeVecI32x4:
case LtSVecI32x4:
case LtUVecI32x4:
case LeSVecI32x4:
case LeUVecI32x4:
case GtSVecI32x4:
case GtUVecI32x4:
case GeSVecI32x4:
case GeUVecI32x4:
case EqVecF32x4:
case NeVecF32x4:
case LtVecF32x4:
case LeVecF32x4:
case GtVecF32x4:
case GeVecF32x4:
case EqVecF64x2:
case NeVecF64x2:
case LtVecF64x2:
case LeVecF64x2:
case GtVecF64x2:
case GeVecF64x2:
case AndVec128:
case OrVec128:
case XorVec128:
case AddVecI8x16:
case AddSatSVecI8x16:
case AddSatUVecI8x16:
case SubVecI8x16:
case SubSatSVecI8x16:
case SubSatUVecI8x16:
case MulVecI8x16:
case AddVecI16x8:
case AddSatSVecI16x8:
case AddSatUVecI16x8:
case SubVecI16x8:
case SubSatSVecI16x8:
case SubSatUVecI16x8:
case MulVecI16x8:
case AddVecI32x4:
case SubVecI32x4:
case MulVecI32x4:
case AddVecI64x2:
case SubVecI64x2:
case AddVecF32x4:
case SubVecF32x4:
case MulVecF32x4:
case DivVecF32x4:
case MinVecF32x4:
case MaxVecF32x4:
case AddVecF64x2:
case SubVecF64x2:
case MulVecF64x2:
case DivVecF64x2:
case MinVecF64x2:
case MaxVecF64x2: {
shouldBeEqualOrFirstIsUnreachable(curr->left->type, v128, curr, "v128 op");
shouldBeEqualOrFirstIsUnreachable(curr->right->type, v128, curr, "v128 op");
break;
}
case InvalidBinary: WASM_UNREACHABLE();
}
shouldBeTrue(Features::get(curr->op) <= info.features, curr, "all used features should be allowed");
}
void FunctionValidator::visitUnary(Unary* curr) {
shouldBeUnequal(curr->value->type, none, curr, "unaries must not receive a none as their input");
if (curr->value->type == unreachable) return; // nothing to check
switch (curr->op) {
case ClzInt32:
case CtzInt32:
case PopcntInt32: {
shouldBeEqual(curr->value->type, i32, curr, "i32 unary value type must be correct");
break;
}
case ClzInt64:
case CtzInt64:
case PopcntInt64: {
shouldBeEqual(curr->value->type, i64, curr, "i64 unary value type must be correct");
break;
}
case NegFloat32:
case AbsFloat32:
case CeilFloat32:
case FloorFloat32:
case TruncFloat32:
case NearestFloat32:
case SqrtFloat32: {
shouldBeEqual(curr->value->type, f32, curr, "f32 unary value type must be correct");
break;
}
case NegFloat64:
case AbsFloat64:
case CeilFloat64:
case FloorFloat64:
case TruncFloat64:
case NearestFloat64:
case SqrtFloat64: {
shouldBeEqual(curr->value->type, f64, curr, "f64 unary value type must be correct");
break;
}
case EqZInt32: {
shouldBeTrue(curr->value->type == i32, curr, "i32.eqz input must be i32");
break;
}
case EqZInt64: {
shouldBeTrue(curr->value->type == i64, curr, "i64.eqz input must be i64");
break;
}
case ExtendSInt32:
case ExtendUInt32:
case ExtendS8Int32:
case ExtendS16Int32: {
shouldBeEqual(curr->value->type, i32, curr, "extend type must be correct");
break;
}
case ExtendS8Int64:
case ExtendS16Int64:
case ExtendS32Int64: {
shouldBeEqual(curr->value->type, i64, curr, "extend type must be correct");
break;
}
case WrapInt64: {
shouldBeEqual(curr->value->type, i64, curr, "wrap type must be correct");
break;
}
case TruncSFloat32ToInt32:
case TruncSFloat32ToInt64:
case TruncUFloat32ToInt32:
case TruncUFloat32ToInt64: {
shouldBeEqual(curr->value->type, f32, curr, "trunc type must be correct");
break;
}
case TruncSatSFloat32ToInt32:
case TruncSatSFloat32ToInt64:
case TruncSatUFloat32ToInt32:
case TruncSatUFloat32ToInt64: {
shouldBeEqual(curr->value->type, f32, curr, "trunc type must be correct");
break;
}
case TruncSFloat64ToInt32:
case TruncSFloat64ToInt64:
case TruncUFloat64ToInt32:
case TruncUFloat64ToInt64: {
shouldBeEqual(curr->value->type, f64, curr, "trunc type must be correct");
break;
}
case TruncSatSFloat64ToInt32:
case TruncSatSFloat64ToInt64:
case TruncSatUFloat64ToInt32:
case TruncSatUFloat64ToInt64: {
shouldBeEqual(curr->value->type, f64, curr, "trunc type must be correct");
break;
}
case ReinterpretFloat32: {
shouldBeEqual(curr->value->type, f32, curr, "reinterpret/f32 type must be correct");
break;
}
case ReinterpretFloat64: {
shouldBeEqual(curr->value->type, f64, curr, "reinterpret/f64 type must be correct");
break;
}
case ConvertUInt32ToFloat32:
case ConvertUInt32ToFloat64:
case ConvertSInt32ToFloat32:
case ConvertSInt32ToFloat64: {
shouldBeEqual(curr->value->type, i32, curr, "convert type must be correct");
break;
}
case ConvertUInt64ToFloat32:
case ConvertUInt64ToFloat64:
case ConvertSInt64ToFloat32:
case ConvertSInt64ToFloat64: {
shouldBeEqual(curr->value->type, i64, curr, "convert type must be correct");
break;
}
case PromoteFloat32: {
shouldBeEqual(curr->value->type, f32, curr, "promote type must be correct");
break;
}
case DemoteFloat64: {
shouldBeEqual(curr->value->type, f64, curr, "demote type must be correct");
break;
}
case ReinterpretInt32: {
shouldBeEqual(curr->value->type, i32, curr, "reinterpret/i32 type must be correct");
break;
}
case ReinterpretInt64: {
shouldBeEqual(curr->value->type, i64, curr, "reinterpret/i64 type must be correct");
break;
}
case SplatVecI8x16:
case SplatVecI16x8:
case SplatVecI32x4:
shouldBeEqual(curr->type, v128, curr, "expected splat to have v128 type");
shouldBeEqual(curr->value->type, i32, curr, "expected i32 splat value");
break;
case SplatVecI64x2:
shouldBeEqual(curr->type, v128, curr, "expected splat to have v128 type");
shouldBeEqual(curr->value->type, i64, curr, "expected i64 splat value");
break;
case SplatVecF32x4:
shouldBeEqual(curr->type, v128, curr, "expected splat to have v128 type");
shouldBeEqual(curr->value->type, f32, curr, "expected f32 splat value");
break;
case SplatVecF64x2:
shouldBeEqual(curr->type, v128, curr, "expected splat to have v128 type");
shouldBeEqual(curr->value->type, f64, curr, "expected i64 splat value");
break;
case NotVec128:
case NegVecI8x16:
case NegVecI16x8:
case NegVecI32x4:
case NegVecI64x2:
case AbsVecF32x4:
case NegVecF32x4:
case SqrtVecF32x4:
case AbsVecF64x2:
case NegVecF64x2:
case SqrtVecF64x2:
case TruncSatSVecF32x4ToVecI32x4:
case TruncSatUVecF32x4ToVecI32x4:
case TruncSatSVecF64x2ToVecI64x2:
case TruncSatUVecF64x2ToVecI64x2:
case ConvertSVecI32x4ToVecF32x4:
case ConvertUVecI32x4ToVecF32x4:
case ConvertSVecI64x2ToVecF64x2:
case ConvertUVecI64x2ToVecF64x2:
shouldBeEqual(curr->type, v128, curr, "expected v128 type");
shouldBeEqual(curr->value->type, v128, curr, "expected v128 operand");
break;
case AnyTrueVecI8x16:
case AllTrueVecI8x16:
case AnyTrueVecI16x8:
case AllTrueVecI16x8:
case AnyTrueVecI32x4:
case AllTrueVecI32x4:
case AnyTrueVecI64x2:
case AllTrueVecI64x2:
shouldBeEqual(curr->type, i32, curr, "expected boolean reduction to have i32 type");
shouldBeEqual(curr->value->type, v128, curr, "expected v128 operand");
break;
case InvalidUnary: WASM_UNREACHABLE();
}
shouldBeTrue(Features::get(curr->op) <= info.features, curr, "all used features should be allowed");
}
void FunctionValidator::visitSelect(Select* curr) {
shouldBeUnequal(curr->ifTrue->type, none, curr, "select left must be valid");
shouldBeUnequal(curr->ifFalse->type, none, curr, "select right must be valid");
shouldBeTrue(curr->condition->type == unreachable || curr->condition->type == i32, curr, "select condition must be valid");
if (curr->ifTrue->type != unreachable && curr->ifFalse->type != unreachable) {
shouldBeEqual(curr->ifTrue->type, curr->ifFalse->type, curr, "select sides must be equal");
}
}
void FunctionValidator::visitDrop(Drop* curr) {
shouldBeTrue(isConcreteType(curr->value->type) || curr->value->type == unreachable, curr, "can only drop a valid value");
}
void FunctionValidator::visitReturn(Return* curr) {
if (curr->value) {
if (returnType == unreachable) {
returnType = curr->value->type;
} else if (curr->value->type != unreachable) {
shouldBeEqual(curr->value->type, returnType, curr, "function results must match");
}
} else {
returnType = none;
}
}
void FunctionValidator::visitHost(Host* curr) {
switch (curr->op) {
case GrowMemory: {
shouldBeEqual(curr->operands.size(), size_t(1), curr, "grow_memory must have 1 operand");
shouldBeEqualOrFirstIsUnreachable(curr->operands[0]->type, i32, curr, "grow_memory must have i32 operand");
break;
}
case CurrentMemory: break;
}
}
void FunctionValidator::visitFunction(Function* curr) {
for (auto type : curr->params) {
shouldBeTrue(isConcreteType(type), curr, "params must be concretely typed");
}
for (auto type : curr->vars) {
shouldBeTrue(isConcreteType(type), curr, "vars must be concretely typed");
}
// if function has no result, it is ignored
// if body is unreachable, it might be e.g. a return
if (curr->body->type != unreachable) {
shouldBeEqual(curr->result, curr->body->type, curr->body, "function body type must match, if function returns");
}
if (returnType != unreachable) {
shouldBeEqual(curr->result, returnType, curr->body, "function result must match, if function has returns");
}
shouldBeTrue(breakInfos.empty(), curr->body, "all named break targets must exist");
returnType = unreachable;
labelNames.clear();
// if function has a named type, it must match up with the function's params and result
if (info.validateGlobally && curr->type.is()) {
auto* ft = getModule()->getFunctionType(curr->type);
shouldBeTrue(ft->params == curr->params, curr->name, "function params must match its declared type");
shouldBeTrue(ft->result == curr->result, curr->name, "function result must match its declared type");
}
if (curr->imported()) {
shouldBeTrue(curr->type.is(), curr->name, "imported functions must have a function type");
}
}
static bool checkOffset(Expression* curr, Address add, Address max) {
if (curr->is<GetGlobal>()) return true;
auto* c = curr->dynCast<Const>();
if (!c) return false;
uint64_t raw = c->value.getInteger();
if (raw > std::numeric_limits<Address::address_t>::max()) {
return false;
}
if (raw + uint64_t(add) > std::numeric_limits<Address::address_t>::max()) {
return false;
}
Address offset = raw;
return offset + add <= max;
}
void FunctionValidator::validateAlignment(size_t align, Type type, Index bytes,
bool isAtomic, Expression* curr) {
if (isAtomic) {
shouldBeEqual(align, (size_t)bytes, curr, "atomic accesses must have natural alignment");
return;
}
switch (align) {
case 1:
case 2:
case 4:
case 8:
case 16: break;
default:{
info.fail("bad alignment: " + std::to_string(align), curr, getFunction());
break;
}
}
shouldBeTrue(align <= bytes, curr, "alignment must not exceed natural");
switch (type) {
case i32:
case f32: {
shouldBeTrue(align <= 4, curr, "alignment must not exceed natural");
break;
}
case i64:
case f64: {
shouldBeTrue(align <= 8, curr, "alignment must not exceed natural");
break;
}
case v128:
case unreachable: break;
case none: WASM_UNREACHABLE();
}
}
static void validateBinaryenIR(Module& wasm, ValidationInfo& info) {
struct BinaryenIRValidator : public PostWalker<BinaryenIRValidator, UnifiedExpressionVisitor<BinaryenIRValidator>> {
ValidationInfo& info;
std::unordered_set<Expression*> seen;
BinaryenIRValidator(ValidationInfo& info) : info(info) {}
void visitExpression(Expression* curr) {
auto scope = getFunction() ? getFunction()->name : Name("(global scope)");
// check if a node type is 'stale', i.e., we forgot to finalize() the node.
auto oldType = curr->type;
ReFinalizeNode().visit(curr);
auto newType = curr->type;
if (newType != oldType) {
// We accept concrete => undefined,
// e.g.
//
// (drop (block (result i32) (unreachable)))
//
// The block has an added type, not derived from the ast itself, so it is
// ok for it to be either i32 or unreachable.
if (!(isConcreteType(oldType) && newType == unreachable)) {
std::ostringstream ss;
ss << "stale type found in " << scope << " on " << curr << "\n(marked as " << printType(oldType) << ", should be " << printType(newType) << ")\n";
info.fail(ss.str(), curr, getFunction());
}
curr->type = oldType;
}
// check if a node is a duplicate - expressions must not be seen more than once
bool inserted;
std::tie(std::ignore, inserted) = seen.insert(curr);
if (!inserted) {
std::ostringstream ss;
ss << "expression seen more than once in the tree in " << scope << " on " << curr << '\n';
info.fail(ss.str(), curr, getFunction());
}
}
};
BinaryenIRValidator binaryenIRValidator(info);
binaryenIRValidator.walkModule(&wasm);
}
// Main validator class
static void validateImports(Module& module, ValidationInfo& info) {
ModuleUtils::iterImportedFunctions(module, [&](Function* curr) {
if (info.validateWeb) {
auto* functionType = module.getFunctionType(curr->type);
info.shouldBeUnequal(functionType->result, i64, curr->name, "Imported function must not have i64 return type");
for (Type param : functionType->params) {
info.shouldBeUnequal(param, i64, curr->name, "Imported function must not have i64 parameters");
}
}
});
if (!info.features.hasMutableGlobals()) {
ModuleUtils::iterImportedGlobals(module, [&](Global* curr) {
info.shouldBeFalse(curr->mutable_, curr->name, "Imported global cannot be mutable");
});
}
}
static void validateExports(Module& module, ValidationInfo& info) {
for (auto& curr : module.exports) {
if (curr->kind == ExternalKind::Function) {
if (info.validateWeb) {
Function* f = module.getFunction(curr->value);
info.shouldBeUnequal(f->result, i64, f->name, "Exported function must not have i64 return type");
for (auto param : f->params) {
info.shouldBeUnequal(param, i64, f->name, "Exported function must not have i64 parameters");
}
}
} else if (curr->kind == ExternalKind::Global && !info.features.hasMutableGlobals()) {
if (Global* g = module.getGlobalOrNull(curr->value)) {
info.shouldBeFalse(g->mutable_, g->name, "Exported global cannot be mutable");
}
}
}
std::unordered_set<Name> exportNames;
for (auto& exp : module.exports) {
Name name = exp->value;
if (exp->kind == ExternalKind::Function) {
info.shouldBeTrue(module.getFunctionOrNull(name), name, "module function exports must be found");
} else if (exp->kind == ExternalKind::Global) {
info.shouldBeTrue(module.getGlobalOrNull(name), name, "module global exports must be found");
} else if (exp->kind == ExternalKind::Table) {
info.shouldBeTrue(name == Name("0") || name == module.table.name, name, "module table exports must be found");
} else if (exp->kind == ExternalKind::Memory) {
info.shouldBeTrue(name == Name("0") || name == module.memory.name, name, "module memory exports must be found");
} else {
WASM_UNREACHABLE();
}
Name exportName = exp->name;
info.shouldBeFalse(exportNames.count(exportName) > 0, exportName, "module exports must be unique");
exportNames.insert(exportName);
}
}
static void validateGlobals(Module& module, ValidationInfo& info) {
ModuleUtils::iterDefinedGlobals(module, [&](Global* curr) {
info.shouldBeTrue(curr->init != nullptr, curr->name, "global init must be non-null");
info.shouldBeTrue(curr->init->is<Const>() || curr->init->is<GetGlobal>(), curr->name, "global init must be valid");
if (!info.shouldBeEqual(curr->type, curr->init->type, curr->init, "global init must have correct type") && !info.quiet) {
info.getStream(nullptr) << "(on global " << curr->name << ")\n";
}
});
}
static void validateMemory(Module& module, ValidationInfo& info) {
auto& curr = module.memory;
info.shouldBeFalse(curr.initial > curr.max, "memory", "memory max >= initial");
info.shouldBeTrue(!curr.hasMax() || curr.max <= Memory::kMaxSize, "memory", "max memory must be <= 4GB, or unlimited");
info.shouldBeTrue(!curr.shared || curr.hasMax(), "memory", "shared memory must have max size");
if (curr.shared) info.shouldBeTrue(info.features.hasAtomics(), "memory", "memory is shared, but atomics are disabled");
for (auto& segment : curr.segments) {
if (!info.shouldBeEqual(segment.offset->type, i32, segment.offset, "segment offset should be i32")) continue;
info.shouldBeTrue(checkOffset(segment.offset, segment.data.size(), curr.initial * Memory::kPageSize), segment.offset, "segment offset should be reasonable");
Index size = segment.data.size();
// If the memory is imported we don't actually know its initial size.
// Specifically wasm dll's import a zero sized memory which is perfectly
// valid.
if (!curr.imported()) {
info.shouldBeTrue(size <= curr.initial * Memory::kPageSize, segment.data.size(), "segment size should fit in memory (initial)");
}
if (segment.offset->is<Const>()) {
Index start = segment.offset->cast<Const>()->value.geti32();
Index end = start + size;
info.shouldBeTrue(end <= curr.initial * Memory::kPageSize, segment.data.size(), "segment size should fit in memory (end)");
}
}
}
static void validateTable(Module& module, ValidationInfo& info) {
auto& curr = module.table;
for (auto& segment : curr.segments) {
info.shouldBeEqual(segment.offset->type, i32, segment.offset, "segment offset should be i32");
info.shouldBeTrue(checkOffset(segment.offset, segment.data.size(), module.table.initial * Table::kPageSize), segment.offset, "segment offset should be reasonable");
for (auto name : segment.data) {
info.shouldBeTrue(module.getFunctionOrNull(name), name, "segment name should be valid");
}
}
}
static void validateModule(Module& module, ValidationInfo& info) {
// start
if (module.start.is()) {
auto func = module.getFunctionOrNull(module.start);
if (info.shouldBeTrue(func != nullptr, module.start, "start must be found")) {
info.shouldBeTrue(func->params.size() == 0, module.start, "start must have 0 params");
info.shouldBeTrue(func->result == none, module.start, "start must not return a value");
}
}
}
// TODO: If we want the validator to be part of libwasm rather than libpasses, then
// Using PassRunner::getPassDebug causes a circular dependence. We should fix that,
// perhaps by moving some of the pass infrastructure into libsupport.
bool WasmValidator::validate(Module& module, FeatureSet features, Flags flags) {
ValidationInfo info;
info.validateWeb = (flags & Web) != 0;
info.validateGlobally = (flags & Globally) != 0;
info.features = features;
info.quiet = (flags & Quiet) != 0;
// parallel wasm logic validation
PassRunner runner(&module);
runner.add<FunctionValidator>(&info);
runner.setIsNested(true);
runner.run();
// validate globally
if (info.validateGlobally) {
validateImports(module, info);
validateExports(module, info);
validateGlobals(module, info);
validateMemory(module, info);
validateTable(module, info);
validateModule(module, info);
}
// validate additional internal IR details when in pass-debug mode
if (PassRunner::getPassDebug()) {
validateBinaryenIR(module, info);
}
// print all the data
if (!info.valid.load() && !info.quiet) {
for (auto& func : module.functions) {
std::cerr << info.getStream(func.get()).str();
}
std::cerr << info.getStream(nullptr).str();
}
return info.valid.load();
}
} // namespace wasm
|