1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
|
#include "ir/possible-contents.h"
#include "ir/subtypes.h"
#include "parser/wat-parser.h"
#include "wasm.h"
#include "gtest/gtest.h"
using namespace wasm;
// Asserts a == b, in any order.
template<typename T> void assertEqualSymmetric(const T& a, const T& b) {
EXPECT_EQ(a, b);
EXPECT_EQ(b, a);
EXPECT_PRED2([](const T& a, const T& b) { return !(a != b); }, a, b);
EXPECT_PRED2([](const T& a, const T& b) { return !(b != a); }, a, b);
}
// Asserts a != b, in any order.
template<typename T> void assertNotEqualSymmetric(const T& a, const T& b) {
EXPECT_NE(a, b);
EXPECT_NE(b, a);
EXPECT_PRED2([](const T& a, const T& b) { return !(a == b); }, a, b);
EXPECT_PRED2([](const T& a, const T& b) { return !(b == a); }, a, b);
}
// Asserts a combined with b (in any order) is equal to c.
template<typename T>
void assertCombination(const T& a, const T& b, const T& c) {
T temp1 = PossibleContents::combine(a, b);
assertEqualSymmetric(temp1, c);
// Also check the type, as nulls will compare equal even if their types
// differ. We want to make sure even the types are identical.
assertEqualSymmetric(temp1.getType(), c.getType());
T temp2 = PossibleContents::combine(b, a);
assertEqualSymmetric(temp2, c);
assertEqualSymmetric(temp2.getType(), c.getType());
// Verify the shorthand API works like the static one.
T temp3 = a;
temp3.combine(b);
assertEqualSymmetric(temp3, temp1);
T temp4 = b;
temp4.combine(a);
assertEqualSymmetric(temp4, temp2);
}
// Parse a module from text and return it.
static std::unique_ptr<Module> parse(std::string module) {
auto wasm = std::make_unique<Module>();
wasm->features = FeatureSet::All;
auto parsed = WATParser::parseModule(*wasm, module);
if (auto* err = parsed.getErr()) {
Fatal() << err->msg << "\n";
}
return wasm;
};
// We want to declare a bunch of globals that are used in various tests. Doing
// so in the global scope is risky, as their constructors use types, and the
// type system itself uses global constructors. Instead, we use a fixture for
// that.
class PossibleContentsTest : public testing::Test {
protected:
Type anyref = Type(HeapType::any, Nullable);
Type funcref = Type(HeapType::func, Nullable);
Type i31ref = Type(HeapType::i31, Nullable);
Type structref = Type(HeapType::struct_, Nullable);
PossibleContents none = PossibleContents::none();
PossibleContents i32Zero = PossibleContents::literal(Literal(int32_t(0)));
PossibleContents i32One = PossibleContents::literal(Literal(int32_t(1)));
PossibleContents f64One = PossibleContents::literal(Literal(double(1)));
PossibleContents anyNull =
PossibleContents::literal(Literal::makeNull(HeapType::any));
PossibleContents funcNull =
PossibleContents::literal(Literal::makeNull(HeapType::func));
PossibleContents i31Null =
PossibleContents::literal(Literal::makeNull(HeapType::i31));
PossibleContents i32Global1 =
PossibleContents::global("i32Global1", Type::i32);
PossibleContents i32Global2 =
PossibleContents::global("i32Global2", Type::i32);
PossibleContents f64Global = PossibleContents::global("f64Global", Type::f64);
PossibleContents anyGlobal = PossibleContents::global("anyGlobal", anyref);
PossibleContents funcGlobal = PossibleContents::global("funcGlobal", funcref);
PossibleContents nonNullFuncGlobal =
PossibleContents::global("funcGlobal", Type(HeapType::func, NonNullable));
PossibleContents nonNullFunc = PossibleContents::literal(
Literal("func", Signature(Type::none, Type::none)));
PossibleContents exactI32 = PossibleContents::exactType(Type::i32);
PossibleContents exactAnyref = PossibleContents::exactType(anyref);
PossibleContents exactFuncref = PossibleContents::exactType(funcref);
PossibleContents exactStructref = PossibleContents::exactType(structref);
PossibleContents exactI31ref = PossibleContents::exactType(i31ref);
PossibleContents exactNonNullAnyref =
PossibleContents::exactType(Type(HeapType::any, NonNullable));
PossibleContents exactNonNullFuncref =
PossibleContents::exactType(Type(HeapType::func, NonNullable));
PossibleContents exactNonNullI31ref =
PossibleContents::exactType(Type(HeapType::i31, NonNullable));
PossibleContents exactFuncSignatureType = PossibleContents::exactType(
Type(Signature(Type::none, Type::none), Nullable));
PossibleContents exactNonNullFuncSignatureType = PossibleContents::exactType(
Type(Signature(Type::none, Type::none), NonNullable));
PossibleContents many = PossibleContents::many();
PossibleContents coneAnyref = PossibleContents::fullConeType(anyref);
PossibleContents coneFuncref = PossibleContents::fullConeType(funcref);
PossibleContents coneFuncref1 = PossibleContents::coneType(funcref, 1);
};
TEST_F(PossibleContentsTest, TestComparisons) {
assertEqualSymmetric(none, none);
assertNotEqualSymmetric(none, i32Zero);
assertNotEqualSymmetric(none, i32Global1);
assertNotEqualSymmetric(none, exactI32);
assertNotEqualSymmetric(none, many);
assertEqualSymmetric(i32Zero, i32Zero);
assertNotEqualSymmetric(i32Zero, i32One);
assertNotEqualSymmetric(i32Zero, f64One);
assertNotEqualSymmetric(i32Zero, i32Global1);
assertNotEqualSymmetric(i32Zero, exactI32);
assertNotEqualSymmetric(i32Zero, many);
assertEqualSymmetric(i32Global1, i32Global1);
assertNotEqualSymmetric(i32Global1, i32Global2);
assertNotEqualSymmetric(i32Global1, exactI32);
assertNotEqualSymmetric(i32Global1, many);
assertEqualSymmetric(exactI32, exactI32);
assertNotEqualSymmetric(exactI32, exactAnyref);
assertNotEqualSymmetric(exactI32, many);
assertEqualSymmetric(many, many);
// Nulls
assertNotEqualSymmetric(i32Zero, anyNull);
assertNotEqualSymmetric(anyNull, funcNull);
assertEqualSymmetric(anyNull, anyNull);
assertEqualSymmetric(exactNonNullAnyref, exactNonNullAnyref);
assertNotEqualSymmetric(exactNonNullAnyref, exactAnyref);
}
TEST_F(PossibleContentsTest, TestHash) {
// Hashes should be deterministic.
EXPECT_EQ(none.hash(), none.hash());
EXPECT_EQ(many.hash(), many.hash());
// Hashes should be different. (In theory hash collisions could appear here,
// but if such simple things collide and the test fails then we should really
// rethink our hash functions!)
EXPECT_NE(none.hash(), many.hash());
EXPECT_NE(none.hash(), i32Zero.hash());
EXPECT_NE(none.hash(), i32One.hash());
EXPECT_NE(none.hash(), anyGlobal.hash());
EXPECT_NE(none.hash(), funcGlobal.hash());
EXPECT_NE(none.hash(), exactAnyref.hash());
EXPECT_NE(none.hash(), exactFuncSignatureType.hash());
EXPECT_NE(none.hash(), coneAnyref.hash());
EXPECT_NE(none.hash(), coneFuncref.hash());
EXPECT_NE(none.hash(), coneFuncref1.hash());
EXPECT_NE(i32Zero.hash(), i32One.hash());
EXPECT_NE(anyGlobal.hash(), funcGlobal.hash());
EXPECT_NE(exactAnyref.hash(), exactFuncSignatureType.hash());
EXPECT_NE(coneAnyref.hash(), coneFuncref.hash());
EXPECT_NE(coneAnyref.hash(), coneFuncref1.hash());
EXPECT_NE(coneFuncref.hash(), coneFuncref1.hash());
}
TEST_F(PossibleContentsTest, TestCombinations) {
// None with anything else becomes the other thing.
assertCombination(none, none, none);
assertCombination(none, i32Zero, i32Zero);
assertCombination(none, i32Global1, i32Global1);
assertCombination(none, exactI32, exactI32);
assertCombination(none, many, many);
// i32(0) will become Many, unless the value or the type is identical.
assertCombination(i32Zero, i32Zero, i32Zero);
assertCombination(i32Zero, i32One, exactI32);
assertCombination(i32Zero, f64One, many);
assertCombination(i32Zero, i32Global1, exactI32);
assertCombination(i32Zero, f64Global, many);
assertCombination(i32Zero, exactI32, exactI32);
assertCombination(i32Zero, exactAnyref, many);
assertCombination(i32Zero, many, many);
assertCombination(i32Global1, i32Global1, i32Global1);
assertCombination(i32Global1, i32Global2, exactI32);
assertCombination(i32Global1, f64Global, many);
assertCombination(i32Global1, exactI32, exactI32);
assertCombination(i32Global1, exactAnyref, many);
assertCombination(i32Global1, many, many);
assertCombination(exactI32, exactI32, exactI32);
assertCombination(exactI32, exactAnyref, many);
assertCombination(exactI32, many, many);
assertCombination(many, many, many);
// Exact references: An exact reference only stays exact when combined with
// the same heap type (nullability may be added, but nothing else). Otherwise
// we go to a cone type or to many.
assertCombination(exactFuncref, exactAnyref, many);
assertCombination(exactFuncref, anyGlobal, many);
assertCombination(exactFuncref, nonNullFunc, coneFuncref1);
assertCombination(exactFuncref, exactFuncref, exactFuncref);
assertCombination(exactFuncref, exactNonNullFuncref, exactFuncref);
// Nulls.
assertCombination(anyNull, i32Zero, many);
assertCombination(anyNull, anyNull, anyNull);
assertCombination(anyNull, exactAnyref, exactAnyref);
// Two nulls go to the lub.
assertCombination(anyNull, i31Null, anyNull);
// Incompatible nulls go to Many.
assertCombination(anyNull, funcNull, many);
assertCombination(exactNonNullAnyref, exactNonNullAnyref, exactNonNullAnyref);
// If one is a null and the other is not, it makes the one that is not a
// null be a nullable type - but keeps the heap type of the other (since the
// type of the null does not matter, all nulls compare equal).
assertCombination(anyNull, exactNonNullAnyref, exactAnyref);
assertCombination(anyNull, exactNonNullI31ref, exactI31ref);
// Funcrefs
// A function reference + a null becomes an exact type (of that sig), plus
// nullability.
assertCombination(nonNullFunc, funcNull, exactFuncSignatureType);
assertCombination(exactFuncSignatureType, funcNull, exactFuncSignatureType);
assertCombination(
exactNonNullFuncSignatureType, funcNull, exactFuncSignatureType);
assertCombination(
nonNullFunc, exactFuncSignatureType, exactFuncSignatureType);
assertCombination(
nonNullFunc, exactNonNullFuncSignatureType, exactNonNullFuncSignatureType);
assertCombination(nonNullFunc, exactI32, many);
// Globals vs nulls. The result is either the global or a null, so all we can
// say is that it is something of the global's type, or a null: a cone.
assertCombination(anyGlobal, anyNull, coneAnyref);
assertCombination(anyGlobal, i31Null, coneAnyref);
}
static PassOptions options;
TEST_F(PossibleContentsTest, TestOracleMinimal) {
// A minimal test of the public API of PossibleTypesOracle. See the lit test
// for coverage of all the internals (using lit makes the result more
// fuzzable).
auto wasm = parse(R"(
(module
(global $null (ref null any) (ref.null any))
(global $something i32 (i32.const 42))
)
)");
ContentOracle oracle(*wasm, options);
// This will be a null constant.
EXPECT_TRUE(oracle.getContents(GlobalLocation{"null"}).isNull());
// This will be 42.
EXPECT_EQ(oracle.getContents(GlobalLocation{"something"}).getLiteral(),
Literal(int32_t(42)));
}
// Asserts a and b have an intersection (or do not), and checks both orderings.
void assertHaveIntersection(PossibleContents a, PossibleContents b) {
EXPECT_TRUE(PossibleContents::haveIntersection(a, b));
EXPECT_TRUE(PossibleContents::haveIntersection(b, a));
#if BINARYEN_TEST_DEBUG
if (!PossibleContents::haveIntersection(a, b) ||
!PossibleContents::haveIntersection(b, a)) {
std::cout << "\nFailure: no intersection:\n" << a << '\n' << b << '\n';
abort();
}
#endif
}
void assertLackIntersection(PossibleContents a, PossibleContents b) {
EXPECT_FALSE(PossibleContents::haveIntersection(a, b));
EXPECT_FALSE(PossibleContents::haveIntersection(b, a));
}
TEST_F(PossibleContentsTest, TestIntersection) {
// None has no contents, so nothing to intersect.
assertLackIntersection(none, none);
assertLackIntersection(none, i32Zero);
assertLackIntersection(none, many);
// Many intersects with anything (but none).
assertHaveIntersection(many, many);
assertHaveIntersection(many, i32Zero);
// Different exact types cannot intersect.
assertLackIntersection(exactI32, exactAnyref);
assertLackIntersection(i32Zero, exactAnyref);
// But nullable ones can - the null can be the intersection, if they are not
// in separate hierarchies.
assertHaveIntersection(exactFuncSignatureType, funcNull);
assertLackIntersection(exactFuncSignatureType, exactAnyref);
assertLackIntersection(anyNull, funcNull);
// Identical types might.
assertHaveIntersection(exactI32, exactI32);
assertHaveIntersection(i32Zero, i32Zero);
assertHaveIntersection(exactFuncSignatureType, exactFuncSignatureType);
assertLackIntersection(i32Zero, i32One);
// Exact types only differing by nullability can intersect (not on the null,
// but on something else).
assertHaveIntersection(exactAnyref, exactNonNullAnyref);
// Due to subtyping, an intersection might exist.
assertHaveIntersection(funcGlobal, funcGlobal);
assertHaveIntersection(funcGlobal, exactFuncSignatureType);
assertHaveIntersection(nonNullFuncGlobal, exactFuncSignatureType);
assertHaveIntersection(funcGlobal, exactNonNullFuncSignatureType);
assertHaveIntersection(nonNullFuncGlobal, exactNonNullFuncSignatureType);
// Separate hierarchies.
assertLackIntersection(funcGlobal, anyGlobal);
}
TEST_F(PossibleContentsTest, TestIntersectWithCombinations) {
// Whenever we combine C = A + B, both A and B must intersect with C. This
// helper function gets a set of things and checks that property on them. It
// returns the set of all contents it ever observed (see below for how we use
// that).
auto doTest = [](std::unordered_set<PossibleContents> set) {
std::vector<PossibleContents> vec(set.begin(), set.end());
// Find the maximum depths for the normalized cone tests later down.
std::unordered_set<HeapType> heapTypes;
for (auto& contents : set) {
auto type = contents.getType();
if (type.isRef()) {
auto heapType = type.getHeapType();
if (!heapType.isBasic()) {
heapTypes.insert(heapType);
}
}
}
std::vector<HeapType> heapTypesVec(heapTypes.begin(), heapTypes.end());
SubTypes subTypes(heapTypesVec);
auto maxDepths = subTypes.getMaxDepths();
// Go over all permutations up to a certain size (this quickly becomes
// extremely slow, obviously, so keep this low).
size_t max = 3;
auto n = set.size();
// |indexes| contains the indexes of the items in vec for the current
// permutation.
std::vector<size_t> indexes(max);
std::fill(indexes.begin(), indexes.end(), 0);
while (1) {
// Test the current permutation: Combine all the relevant things, and then
// check they all have an intersection.
PossibleContents combination;
for (auto index : indexes) {
combination.combine(vec[index]);
}
// Note the combination in the set.
set.insert(combination);
#if BINARYEN_TEST_DEBUG
for (auto index : indexes) {
std::cout << index << ' ';
combination.combine(vec[index]);
}
std::cout << '\n';
#endif
for (auto index : indexes) {
auto item = vec[index];
if (item.isNone()) {
assertLackIntersection(combination, item);
continue;
}
#if BINARYEN_TEST_DEBUG
if (!PossibleContents::haveIntersection(combination, item)) {
std::cout << "\nFailure: no expected intersection. Indexes:\n";
for (auto index : indexes) {
std::cout << index << "\n ";
vec[index].dump(std::cout);
std::cout << '\n';
}
std::cout << "combo:\n";
combination.dump(std::cout);
std::cout << "\ncompared item (index " << index << "):\n";
item.dump(std::cout);
std::cout << '\n';
abort();
}
#endif
assertHaveIntersection(combination, item);
auto type = combination.getType();
if (type.isRef()) {
// If we normalize the combination's depth, the item must still have
// an intersection. That is, normalization must not have a bug that
// results in cones that are too shallow.
auto normalizedDepth = maxDepths[type.getHeapType()];
auto normalizedCone =
PossibleContents::coneType(type, normalizedDepth);
assertHaveIntersection(normalizedCone, item);
}
// Test intersect() method, which is supported with a full cone type.
// In that case we can test that the intersection of A with A + B is
// simply A.
if (combination.isFullConeType()) {
auto intersection = item;
intersection.intersect(combination);
EXPECT_EQ(intersection, item);
#if BINARYEN_TEST_DEBUG
if (intersection != item) {
std::cout << "\nFailure: wrong intersection.\n";
std::cout << "item: " << item << '\n';
std::cout << "combination: " << combination << '\n';
std::cout << "intersection: " << intersection << '\n';
abort();
}
#endif
// The intersection is contained in each of the things we intersected
// (but we can only compare to the full cone, as the API is restricted
// to that).
EXPECT_TRUE(
PossibleContents::isSubContents(intersection, combination));
}
}
// Move to the next permutation.
size_t i = 0;
while (1) {
indexes[i]++;
if (indexes[i] == n) {
// Overflow.
indexes[i] = 0;
i++;
if (i == max) {
// All done.
return set;
}
} else {
break;
}
}
}
WASM_UNREACHABLE("loop above returns manually");
};
// Start from an initial set of the hardcoded contents we have in our test
// fixture.
std::unordered_set<PossibleContents> initial = {none,
f64One,
anyNull,
funcNull,
i31Null,
i32Global1,
i32Global2,
f64Global,
anyGlobal,
funcGlobal,
nonNullFuncGlobal,
nonNullFunc,
exactI32,
exactAnyref,
exactFuncref,
exactStructref,
exactI31ref,
exactNonNullAnyref,
exactNonNullFuncref,
exactNonNullI31ref,
exactFuncSignatureType,
exactNonNullFuncSignatureType,
many,
coneAnyref,
coneFuncref,
coneFuncref1};
// Add some additional interesting types.
auto structType =
Type(HeapType(Struct({Field(Type::i32, Immutable)})), NonNullable);
initial.insert(PossibleContents::coneType(structType, 0));
auto arrayType =
Type(HeapType(Array(Field(Type::i32, Immutable))), NonNullable);
initial.insert(PossibleContents::coneType(arrayType, 0));
// After testing on the initial contents, also test using anything new that
// showed up while combining them.
auto subsequent = doTest(initial);
while (subsequent.size() > initial.size()) {
initial = subsequent;
subsequent = doTest(subsequent);
}
}
void assertIntersection(PossibleContents a,
PossibleContents b,
PossibleContents result) {
auto intersection = a;
intersection.intersect(b);
EXPECT_EQ(intersection, result);
EXPECT_EQ(PossibleContents::haveIntersection(a, b), !result.isNone());
}
TEST_F(PossibleContentsTest, TestStructCones) {
/*
A E
/ \
B C
\
D
*/
TypeBuilder builder(5);
builder.createRecGroup(0, 5);
builder[0].setOpen() = Struct(FieldList{});
builder[1].setOpen().subTypeOf(builder[0]) = Struct(FieldList{});
builder[2].setOpen().subTypeOf(builder[0]) = Struct(FieldList{});
builder[3].setOpen().subTypeOf(builder[2]) = Struct(FieldList{});
builder[4].setOpen() = Struct(FieldList{});
auto result = builder.build();
ASSERT_TRUE(result);
auto types = *result;
auto A = types[0];
auto B = types[1];
auto C = types[2];
auto D = types[3];
auto E = types[4];
ASSERT_FALSE(A.getDeclaredSuperType());
ASSERT_EQ(B.getDeclaredSuperType(), A);
ASSERT_EQ(C.getDeclaredSuperType(), A);
ASSERT_EQ(D.getDeclaredSuperType(), C);
auto nullA = Type(A, Nullable);
auto nullB = Type(B, Nullable);
auto nullC = Type(C, Nullable);
auto nullD = Type(D, Nullable);
auto nullE = Type(E, Nullable);
auto exactA = PossibleContents::exactType(nullA);
auto exactB = PossibleContents::exactType(nullB);
auto exactC = PossibleContents::exactType(nullC);
auto exactD = PossibleContents::exactType(nullD);
auto exactE = PossibleContents::exactType(nullE);
auto nnA = Type(A, NonNullable);
auto nnB = Type(B, NonNullable);
auto nnC = Type(C, NonNullable);
auto nnD = Type(D, NonNullable);
auto nnE = Type(E, NonNullable);
auto nnExactA = PossibleContents::exactType(nnA);
auto nnExactB = PossibleContents::exactType(nnB);
auto nnExactC = PossibleContents::exactType(nnC);
auto nnExactD = PossibleContents::exactType(nnD);
auto nnExactE = PossibleContents::exactType(nnE);
assertCombination(exactA, exactA, exactA);
assertCombination(exactA, exactA, PossibleContents::coneType(nullA, 0));
assertCombination(exactA, exactB, PossibleContents::coneType(nullA, 1));
assertCombination(exactA, exactC, PossibleContents::coneType(nullA, 1));
assertCombination(exactA, exactD, PossibleContents::coneType(nullA, 2));
assertCombination(exactA, exactE, PossibleContents::coneType(structref, 1));
assertCombination(
exactA, exactStructref, PossibleContents::coneType(structref, 1));
assertCombination(exactB, exactB, exactB);
assertCombination(exactB, exactC, PossibleContents::coneType(nullA, 1));
assertCombination(exactB, exactD, PossibleContents::coneType(nullA, 2));
assertCombination(exactB, exactE, PossibleContents::coneType(structref, 2));
assertCombination(
exactB, exactStructref, PossibleContents::coneType(structref, 2));
assertCombination(exactC, exactC, exactC);
assertCombination(exactC, exactD, PossibleContents::coneType(nullC, 1));
assertCombination(exactC, exactE, PossibleContents::coneType(structref, 2));
assertCombination(
exactC, exactStructref, PossibleContents::coneType(structref, 2));
assertCombination(exactD, exactD, exactD);
assertCombination(exactD, exactE, PossibleContents::coneType(structref, 3));
assertCombination(
exactD, exactStructref, PossibleContents::coneType(structref, 3));
assertCombination(exactE, exactE, exactE);
assertCombination(
exactE, exactStructref, PossibleContents::coneType(structref, 1));
assertCombination(exactStructref, exactStructref, exactStructref);
assertCombination(
exactStructref, exactAnyref, PossibleContents::coneType(anyref, 2));
// Combinations of cones.
assertCombination(PossibleContents::coneType(nullA, 5),
PossibleContents::coneType(nullA, 7),
PossibleContents::coneType(nullA, 7));
// Increment the cone of D as we go here, until it matters.
assertCombination(PossibleContents::coneType(nullA, 5),
PossibleContents::coneType(nullD, 2),
PossibleContents::coneType(nullA, 5));
assertCombination(PossibleContents::coneType(nullA, 5),
PossibleContents::coneType(nullD, 3),
PossibleContents::coneType(nullA, 5));
assertCombination(PossibleContents::coneType(nullA, 5),
PossibleContents::coneType(nullD, 4),
PossibleContents::coneType(nullA, 6));
assertCombination(PossibleContents::coneType(nullA, 5),
PossibleContents::coneType(nullE, 7),
PossibleContents::coneType(structref, 8));
assertCombination(PossibleContents::coneType(nullB, 4),
PossibleContents::coneType(structref, 1),
PossibleContents::coneType(structref, 6));
// Combinations of cones and exact types.
assertCombination(exactA,
PossibleContents::coneType(nullA, 3),
PossibleContents::coneType(nullA, 3));
assertCombination(exactA,
PossibleContents::coneType(nullD, 3),
PossibleContents::coneType(nullA, 5));
assertCombination(exactD,
PossibleContents::coneType(nullA, 3),
PossibleContents::coneType(nullA, 3));
assertCombination(exactA,
PossibleContents::coneType(nullE, 2),
PossibleContents::coneType(structref, 3));
assertCombination(exactA,
PossibleContents::coneType(structref, 1),
PossibleContents::coneType(structref, 1));
assertCombination(exactA,
PossibleContents::coneType(structref, 2),
PossibleContents::coneType(structref, 2));
assertCombination(exactStructref,
PossibleContents::coneType(nullB, 3),
PossibleContents::coneType(structref, 5));
// Full cones.
assertCombination(PossibleContents::fullConeType(nullA),
exactA,
PossibleContents::fullConeType(nullA));
assertCombination(PossibleContents::fullConeType(nullA),
PossibleContents::coneType(nullA, 2),
PossibleContents::fullConeType(nullA));
// All full cones with A remain full cones, except for E.
assertCombination(PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nullA));
assertCombination(PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nullB),
PossibleContents::fullConeType(nullA));
assertCombination(PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nullC),
PossibleContents::fullConeType(nullA));
assertCombination(PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nullD),
PossibleContents::fullConeType(nullA));
assertCombination(PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nullE),
PossibleContents::fullConeType(structref));
// Intersections. Test with non-nullable types to avoid the null being a
// possible intersection.
assertHaveIntersection(nnExactA, nnExactA);
assertLackIntersection(nnExactA, nnExactB);
assertLackIntersection(nnExactA, nnExactC);
assertLackIntersection(nnExactA, nnExactD);
assertLackIntersection(nnExactA, nnExactE);
assertHaveIntersection(PossibleContents::coneType(nnA, 1), nnExactB);
assertHaveIntersection(PossibleContents::coneType(nnA, 1), nnExactC);
assertHaveIntersection(PossibleContents::coneType(nnA, 2), nnExactD);
assertLackIntersection(PossibleContents::coneType(nnA, 1), nnExactD);
assertLackIntersection(PossibleContents::coneType(nnA, 1), nnExactE);
assertLackIntersection(PossibleContents::coneType(nnA, 2), nnExactE);
assertHaveIntersection(PossibleContents::coneType(nnA, 1),
PossibleContents::coneType(nnC, 100));
assertLackIntersection(PossibleContents::coneType(nnA, 1),
PossibleContents::coneType(nnD, 100));
// Neither is a subtype of the other, but nulls are possible, so a null can be
// the intersection.
assertHaveIntersection(PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nullE));
// Without null on one side, we cannot intersect.
assertLackIntersection(PossibleContents::fullConeType(nnA),
PossibleContents::fullConeType(nullE));
// Computing intersections is supported with a full cone type.
assertIntersection(none, PossibleContents::fullConeType(nnA), none);
assertIntersection(many,
PossibleContents::fullConeType(nnA),
PossibleContents::fullConeType(nnA));
assertIntersection(many,
PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nullA));
assertIntersection(exactA, PossibleContents::fullConeType(nullA), exactA);
assertIntersection(nnExactA, PossibleContents::fullConeType(nullA), nnExactA);
assertIntersection(exactA, PossibleContents::fullConeType(nnA), nnExactA);
assertIntersection(exactB, PossibleContents::fullConeType(nullA), exactB);
assertIntersection(nnExactB, PossibleContents::fullConeType(nullA), nnExactB);
assertIntersection(exactB, PossibleContents::fullConeType(nnA), nnExactB);
auto literalNullA = PossibleContents::literal(Literal::makeNull(A));
assertIntersection(
literalNullA, PossibleContents::fullConeType(nullA), literalNullA);
assertIntersection(literalNullA, PossibleContents::fullConeType(nnA), none);
assertIntersection(
literalNullA, PossibleContents::fullConeType(nullB), literalNullA);
assertIntersection(literalNullA, PossibleContents::fullConeType(nnB), none);
assertIntersection(
literalNullA, PossibleContents::fullConeType(nullE), literalNullA);
assertIntersection(literalNullA, PossibleContents::fullConeType(nnE), none);
assertIntersection(exactA,
PossibleContents::fullConeType(nullB),
PossibleContents::literal(Literal::makeNull(B)));
assertIntersection(nnExactA, PossibleContents::fullConeType(nullB), none);
assertIntersection(exactA, PossibleContents::fullConeType(nnB), none);
// A and E have no intersection, so the only possibility is a null, and that
// null must be the bottom type.
assertIntersection(
exactA,
PossibleContents::fullConeType(nullE),
PossibleContents::literal(Literal::makeNull(HeapType::none)));
assertIntersection(PossibleContents::coneType(nnA, 1),
PossibleContents::fullConeType(nnB),
nnExactB);
assertIntersection(PossibleContents::coneType(nnB, 1),
PossibleContents::fullConeType(nnA),
PossibleContents::coneType(nnB, 1));
assertIntersection(PossibleContents::coneType(nnD, 2),
PossibleContents::fullConeType(nnA),
PossibleContents::coneType(nnD, 2));
assertIntersection(PossibleContents::coneType(nnA, 5),
PossibleContents::fullConeType(nnD),
PossibleContents::coneType(nnD, 3));
assertIntersection(PossibleContents::coneType(nnA, 1),
PossibleContents::fullConeType(nnD),
none);
// Globals stay as globals, but their type might get refined.
assertIntersection(
funcGlobal, PossibleContents::fullConeType(funcref), funcGlobal);
// No global filtering.
auto signature = Type(Signature(Type::none, Type::none), Nullable);
assertIntersection(
nonNullFunc, PossibleContents::fullConeType(signature), nonNullFunc);
// Filter a global to a more specific type.
assertIntersection(funcGlobal,
PossibleContents::fullConeType(signature),
PossibleContents::global("funcGlobal", signature));
// Filter a global's nullability only.
auto nonNullFuncRef = Type(HeapType::func, NonNullable);
assertIntersection(funcGlobal,
PossibleContents::fullConeType(nonNullFuncRef),
nonNullFuncGlobal);
// Incompatible global and cone types have no intersection.
assertIntersection(funcGlobal, PossibleContents::fullConeType(nullE), none);
// Incompatible hierarchies have no intersection.
assertIntersection(
literalNullA, PossibleContents::fullConeType(funcref), none);
// Computing intersections is also supported with a Literal.
assertIntersection(i32Zero, i32Zero, i32Zero);
assertIntersection(i32One, i32Zero, none);
assertIntersection(i32Global1, i32Zero, i32Zero);
assertIntersection(funcGlobal, i32Zero, none);
assertIntersection(
PossibleContents::fullConeType(Type::i32), i32Zero, i32Zero);
assertIntersection(PossibleContents::fullConeType(Type::f64), i32Zero, none);
// Computing intersections is also supported with empty contents.
assertIntersection(none, none, none);
assertIntersection(literalNullA, none, none);
assertIntersection(funcGlobal, none, none);
assertIntersection(PossibleContents::fullConeType(signature), none, none);
// Subcontents. This API only supports the case where one of the inputs is a
// full cone type.
// First, compare exact types to such a cone.
EXPECT_TRUE(PossibleContents::isSubContents(
exactA, PossibleContents::fullConeType(nullA)));
EXPECT_TRUE(PossibleContents::isSubContents(
nnExactA, PossibleContents::fullConeType(nnA)));
EXPECT_TRUE(PossibleContents::isSubContents(
nnExactA, PossibleContents::fullConeType(nullA)));
EXPECT_TRUE(PossibleContents::isSubContents(
nnExactD, PossibleContents::fullConeType(nullA)));
EXPECT_FALSE(PossibleContents::isSubContents(
exactA, PossibleContents::fullConeType(nnA)));
EXPECT_FALSE(PossibleContents::isSubContents(
exactA, PossibleContents::fullConeType(nullB)));
// Next, compare cones.
EXPECT_TRUE(
PossibleContents::isSubContents(PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nullA)));
EXPECT_TRUE(
PossibleContents::isSubContents(PossibleContents::fullConeType(nnA),
PossibleContents::fullConeType(nullA)));
EXPECT_TRUE(PossibleContents::isSubContents(
PossibleContents::fullConeType(nnA), PossibleContents::fullConeType(nnA)));
EXPECT_TRUE(
PossibleContents::isSubContents(PossibleContents::fullConeType(nullD),
PossibleContents::fullConeType(nullA)));
EXPECT_FALSE(
PossibleContents::isSubContents(PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nnA)));
EXPECT_FALSE(
PossibleContents::isSubContents(PossibleContents::fullConeType(nullA),
PossibleContents::fullConeType(nullD)));
// Trivial values.
EXPECT_TRUE(PossibleContents::isSubContents(
PossibleContents::none(), PossibleContents::fullConeType(nullA)));
EXPECT_FALSE(PossibleContents::isSubContents(
PossibleContents::many(), PossibleContents::fullConeType(nullA)));
EXPECT_TRUE(PossibleContents::isSubContents(
anyNull, PossibleContents::fullConeType(nullA)));
EXPECT_FALSE(PossibleContents::isSubContents(
anyNull, PossibleContents::fullConeType(nnA)));
// Tests cases with a full cone only on the left. Such a cone is only a sub-
// contents of Many.
EXPECT_FALSE(PossibleContents::isSubContents(
PossibleContents::fullConeType(nullA), exactA));
EXPECT_FALSE(PossibleContents::isSubContents(
PossibleContents::fullConeType(nullA), nnExactA));
EXPECT_FALSE(PossibleContents::isSubContents(
PossibleContents::fullConeType(nullA), PossibleContents::none()));
EXPECT_TRUE(PossibleContents::isSubContents(
PossibleContents::fullConeType(nullA), PossibleContents::many()));
EXPECT_FALSE(PossibleContents::isSubContents(
PossibleContents::fullConeType(nullA), anyNull));
EXPECT_FALSE(PossibleContents::isSubContents(
PossibleContents::fullConeType(nnA), anyNull));
}
TEST_F(PossibleContentsTest, TestOracleManyTypes) {
// Test for a node with many possible types. The pass limits how many it
// notices to not use excessive memory, so even though 4 are possible here,
// we'll just report that more than one is possible, a cone of data.
auto wasm = parse(R"(
(module
(type $A (sub (struct (field i32))))
(type $B (sub (struct (field i64))))
(type $C (sub (struct (field f32))))
(type $D (sub (struct (field f64))))
(func $foo (result (ref any))
(select (result (ref any))
(select (result (ref any))
(struct.new_default $A)
(struct.new_default $B)
(i32.const 0)
)
(select (result (ref any))
(struct.new_default $C)
(struct.new_default $D)
(i32.const 0)
)
(i32.const 0)
)
)
)
)");
ContentOracle oracle(*wasm, options);
// The body's contents must be a cone of data with depth 1.
auto bodyContents =
oracle.getContents(ResultLocation{wasm->getFunction("foo"), 0});
ASSERT_TRUE(bodyContents.isConeType());
EXPECT_EQ(bodyContents.getType().getHeapType(), HeapType::struct_);
EXPECT_EQ(bodyContents.getCone().depth, Index(1));
}
TEST_F(PossibleContentsTest, TestOracleNoFullCones) {
// PossibleContents should be normalized, so we never have full cones (depth
// infinity).
auto wasm = parse(R"(
(module
(type $A (sub (struct (field i32))))
(type $B (sub $A (struct (field i32))))
(type $C (sub $B (struct (field i32))))
(func $foo (export "foo")
;; Note we must declare $C so that $B and $C have uses and are not
;; removed automatically from consideration.
(param $a (ref $A)) (param $c (ref $C))
(result (ref any))
(local.get $a)
)
)
)");
ContentOracle oracle(*wasm, options);
// The function is exported, and all we know about the parameter $a is that it
// is some subtype of $A. This is normalized to depth 2 because that is the
// actual depth of subtypes.
auto bodyContents =
oracle.getContents(ResultLocation{wasm->getFunction("foo"), 0});
ASSERT_TRUE(bodyContents.isConeType());
EXPECT_EQ(bodyContents.getCone().depth, Index(2));
}
|