1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
#include "ir/possible-contents.h"
#include "wasm-s-parser.h"
#include "wasm.h"
#include "gtest/gtest.h"
using namespace wasm;
// Asserts a == b, in any order.
template<typename T> void assertEqualSymmetric(const T& a, const T& b) {
EXPECT_EQ(a, b);
EXPECT_EQ(b, a);
EXPECT_PRED2([](const T& a, const T& b) { return !(a != b); }, a, b);
EXPECT_PRED2([](const T& a, const T& b) { return !(b != a); }, a, b);
}
// Asserts a != b, in any order.
template<typename T> void assertNotEqualSymmetric(const T& a, const T& b) {
EXPECT_NE(a, b);
EXPECT_NE(b, a);
EXPECT_PRED2([](const T& a, const T& b) { return !(a == b); }, a, b);
EXPECT_PRED2([](const T& a, const T& b) { return !(b == a); }, a, b);
}
// Asserts a combined with b (in any order) is equal to c.
template<typename T>
void assertCombination(const T& a, const T& b, const T& c) {
T temp1 = a;
temp1.combine(b);
assertEqualSymmetric(temp1, c);
// Also check the type, as nulls will compare equal even if their types
// differ. We want to make sure even the types are identical.
assertEqualSymmetric(temp1.getType(), c.getType());
T temp2 = b;
temp2.combine(a);
assertEqualSymmetric(temp2, c);
assertEqualSymmetric(temp2.getType(), c.getType());
}
// Parse a module from text and return it.
static std::unique_ptr<Module> parse(std::string module) {
auto wasm = std::make_unique<Module>();
wasm->features = FeatureSet::All;
try {
SExpressionParser parser(&module.front());
Element& root = *parser.root;
SExpressionWasmBuilder builder(*wasm, *root[0], IRProfile::Normal);
} catch (ParseException& p) {
p.dump(std::cerr);
Fatal() << "error in parsing wasm text";
}
return wasm;
};
// We want to declare a bunch of globals that are used in various tests. Doing
// so in the global scope is risky, as their constructors use types, and the
// type system itself uses global constructors. Instead, we use a fixture for
// that.
class PossibleContentsTest : public testing::Test {
protected:
void SetUp() override {
// Use nominal typing to test struct types.
wasm::setTypeSystem(TypeSystem::Nominal);
}
Type anyref = Type(HeapType::any, Nullable);
Type funcref = Type(HeapType::func, Nullable);
Type i31ref = Type(HeapType::i31, Nullable);
PossibleContents none = PossibleContents::none();
PossibleContents i32Zero = PossibleContents::literal(Literal(int32_t(0)));
PossibleContents i32One = PossibleContents::literal(Literal(int32_t(1)));
PossibleContents f64One = PossibleContents::literal(Literal(double(1)));
PossibleContents anyNull =
PossibleContents::literal(Literal::makeNull(HeapType::any));
PossibleContents funcNull =
PossibleContents::literal(Literal::makeNull(HeapType::func));
PossibleContents i31Null =
PossibleContents::literal(Literal::makeNull(HeapType::i31));
PossibleContents i32Global1 =
PossibleContents::global("i32Global1", Type::i32);
PossibleContents i32Global2 =
PossibleContents::global("i32Global2", Type::i32);
PossibleContents f64Global = PossibleContents::global("f64Global", Type::f64);
PossibleContents anyGlobal = PossibleContents::global("anyGlobal", anyref);
PossibleContents funcGlobal = PossibleContents::global("funcGlobal", funcref);
PossibleContents nonNullFuncGlobal =
PossibleContents::global("funcGlobal", Type(HeapType::func, NonNullable));
PossibleContents nonNullFunc = PossibleContents::literal(
Literal("func", Signature(Type::none, Type::none)));
PossibleContents exactI32 = PossibleContents::exactType(Type::i32);
PossibleContents exactAnyref = PossibleContents::exactType(anyref);
PossibleContents exactFuncref = PossibleContents::exactType(funcref);
PossibleContents exactI31ref = PossibleContents::exactType(i31ref);
PossibleContents exactNonNullAnyref =
PossibleContents::exactType(Type(HeapType::any, NonNullable));
PossibleContents exactNonNullFuncref =
PossibleContents::exactType(Type(HeapType::func, NonNullable));
PossibleContents exactNonNullI31ref =
PossibleContents::exactType(Type(HeapType::i31, NonNullable));
PossibleContents exactFuncSignatureType = PossibleContents::exactType(
Type(Signature(Type::none, Type::none), Nullable));
PossibleContents exactNonNullFuncSignatureType = PossibleContents::exactType(
Type(Signature(Type::none, Type::none), NonNullable));
PossibleContents many = PossibleContents::many();
};
TEST_F(PossibleContentsTest, TestComparisons) {
assertEqualSymmetric(none, none);
assertNotEqualSymmetric(none, i32Zero);
assertNotEqualSymmetric(none, i32Global1);
assertNotEqualSymmetric(none, exactI32);
assertNotEqualSymmetric(none, many);
assertEqualSymmetric(i32Zero, i32Zero);
assertNotEqualSymmetric(i32Zero, i32One);
assertNotEqualSymmetric(i32Zero, f64One);
assertNotEqualSymmetric(i32Zero, i32Global1);
assertNotEqualSymmetric(i32Zero, exactI32);
assertNotEqualSymmetric(i32Zero, many);
assertEqualSymmetric(i32Global1, i32Global1);
assertNotEqualSymmetric(i32Global1, i32Global2);
assertNotEqualSymmetric(i32Global1, exactI32);
assertNotEqualSymmetric(i32Global1, many);
assertEqualSymmetric(exactI32, exactI32);
assertNotEqualSymmetric(exactI32, exactAnyref);
assertNotEqualSymmetric(exactI32, many);
assertEqualSymmetric(many, many);
// Nulls
assertNotEqualSymmetric(i32Zero, anyNull);
assertEqualSymmetric(anyNull, anyNull);
assertEqualSymmetric(anyNull, funcNull); // All nulls compare equal.
assertEqualSymmetric(exactNonNullAnyref, exactNonNullAnyref);
assertNotEqualSymmetric(exactNonNullAnyref, exactAnyref);
}
TEST_F(PossibleContentsTest, TestCombinations) {
// None with anything else becomes the other thing.
assertCombination(none, none, none);
assertCombination(none, i32Zero, i32Zero);
assertCombination(none, i32Global1, i32Global1);
assertCombination(none, exactI32, exactI32);
assertCombination(none, many, many);
// i32(0) will become Many, unless the value or the type is identical.
assertCombination(i32Zero, i32Zero, i32Zero);
assertCombination(i32Zero, i32One, exactI32);
assertCombination(i32Zero, f64One, many);
assertCombination(i32Zero, i32Global1, exactI32);
assertCombination(i32Zero, f64Global, many);
assertCombination(i32Zero, exactI32, exactI32);
assertCombination(i32Zero, exactAnyref, many);
assertCombination(i32Zero, many, many);
assertCombination(i32Global1, i32Global1, i32Global1);
assertCombination(i32Global1, i32Global2, exactI32);
assertCombination(i32Global1, f64Global, many);
assertCombination(i32Global1, exactI32, exactI32);
assertCombination(i32Global1, exactAnyref, many);
assertCombination(i32Global1, many, many);
assertCombination(exactI32, exactI32, exactI32);
assertCombination(exactI32, exactAnyref, many);
assertCombination(exactI32, many, many);
assertCombination(many, many, many);
// Exact references: An exact reference only stays exact when combined with
// the same heap type (nullability may be added, but nothing else).
assertCombination(exactFuncref, exactAnyref, many);
assertCombination(exactFuncref, anyGlobal, many);
assertCombination(exactFuncref, nonNullFunc, many);
assertCombination(exactFuncref, exactFuncref, exactFuncref);
assertCombination(exactFuncref, exactNonNullFuncref, exactFuncref);
// Nulls.
assertCombination(anyNull, i32Zero, many);
assertCombination(anyNull, anyNull, anyNull);
assertCombination(anyNull, exactAnyref, exactAnyref);
// Two nulls go to the lub.
assertCombination(anyNull, i31Null, anyNull);
// Incompatible nulls go to Many.
assertCombination(anyNull, funcNull, many);
assertCombination(exactNonNullAnyref, exactNonNullAnyref, exactNonNullAnyref);
// If one is a null and the other is not, it makes the one that is not a
// null be a nullable type - but keeps the heap type of the other (since the
// type of the null does not matter, all nulls compare equal).
assertCombination(anyNull, exactNonNullAnyref, exactAnyref);
assertCombination(anyNull, exactNonNullI31ref, exactI31ref);
// Funcrefs
// A function reference + a null becomes an exact type (of that sig), plus
// nullability.
assertCombination(nonNullFunc, funcNull, exactFuncSignatureType);
assertCombination(exactFuncSignatureType, funcNull, exactFuncSignatureType);
assertCombination(
exactNonNullFuncSignatureType, funcNull, exactFuncSignatureType);
assertCombination(
nonNullFunc, exactFuncSignatureType, exactFuncSignatureType);
assertCombination(
nonNullFunc, exactNonNullFuncSignatureType, exactNonNullFuncSignatureType);
assertCombination(nonNullFunc, exactI32, many);
// Globals vs nulls.
assertCombination(anyGlobal, anyNull, many);
assertCombination(anyGlobal, i31Null, many);
}
TEST_F(PossibleContentsTest, TestOracleMinimal) {
// A minimal test of the public API of PossibleTypesOracle. See the lit test
// for coverage of all the internals (using lit makes the result more
// fuzzable).
auto wasm = parse(R"(
(module
(global $null (ref null any) (ref.null any))
(global $something i32 (i32.const 42))
)
)");
ContentOracle oracle(*wasm);
// This will be a null constant.
EXPECT_TRUE(oracle.getContents(GlobalLocation{"null"}).isNull());
// This will be 42.
EXPECT_EQ(oracle.getContents(GlobalLocation{"something"}).getLiteral(),
Literal(int32_t(42)));
}
// Asserts a and b have an intersection (or do not), and checks both orderings.
void assertHaveIntersection(PossibleContents a, PossibleContents b) {
EXPECT_TRUE(PossibleContents::haveIntersection(a, b));
EXPECT_TRUE(PossibleContents::haveIntersection(b, a));
}
void assertLackIntersection(PossibleContents a, PossibleContents b) {
EXPECT_FALSE(PossibleContents::haveIntersection(a, b));
EXPECT_FALSE(PossibleContents::haveIntersection(b, a));
}
TEST_F(PossibleContentsTest, TestIntersection) {
// None has no contents, so nothing to intersect.
assertLackIntersection(none, none);
assertLackIntersection(none, i32Zero);
assertLackIntersection(none, many);
// Many intersects with anything (but none).
assertHaveIntersection(many, many);
assertHaveIntersection(many, i32Zero);
// Different exact types cannot intersect.
assertLackIntersection(exactI32, exactAnyref);
assertLackIntersection(i32Zero, exactAnyref);
// But nullable ones can - the null can be the intersection.
assertHaveIntersection(exactFuncSignatureType, exactAnyref);
assertHaveIntersection(exactFuncSignatureType, funcNull);
assertHaveIntersection(anyNull, funcNull);
// Identical types might.
assertHaveIntersection(exactI32, exactI32);
assertHaveIntersection(i32Zero, i32Zero);
assertHaveIntersection(exactFuncSignatureType, exactFuncSignatureType);
assertHaveIntersection(i32Zero, i32One); // TODO: this could be inferred false
// Due to subtyping, an intersection might exist.
assertHaveIntersection(funcGlobal, funcGlobal);
assertHaveIntersection(funcGlobal, exactFuncSignatureType);
// Neither is a subtype of the other, but nulls are possible, so a null can be
// the intersection.
assertHaveIntersection(funcGlobal, anyGlobal);
// Without null on one side, we cannot intersect.
assertLackIntersection(nonNullFuncGlobal, anyGlobal);
}
TEST_F(PossibleContentsTest, TestOracleManyTypes) {
// Test for a node with many possible types. The pass limits how many it
// notices to not use excessive memory, so even though 4 are possible here,
// we'll just report that more than one is possible ("many").
auto wasm = parse(R"(
(module
(type $A (struct_subtype (field i32) data))
(type $B (struct_subtype (field i64) data))
(type $C (struct_subtype (field f32) data))
(type $D (struct_subtype (field f64) data))
(func $foo (result (ref any))
(select (result (ref any))
(select (result (ref any))
(struct.new $A)
(struct.new $B)
(i32.const 0)
)
(select (result (ref any))
(struct.new $C)
(struct.new $D)
(i32.const 0)
)
(i32.const 0)
)
)
)
)");
ContentOracle oracle(*wasm);
// The function's body should be Many.
EXPECT_TRUE(
oracle.getContents(ResultLocation{wasm->getFunction("foo"), 0}).isMany());
}
|