diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-08-02 08:20:22 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-08-02 08:20:22 +0100 |
commit | 51e51da89687dc4678f64377e1c9ef7a74fb410e (patch) | |
tree | 21890778d268723a95cf6915469812e3f5db2f00 | |
parent | 6e33ff62d610776bf5a6b2144b2e8f98c39ccfcc (diff) | |
download | candle-51e51da89687dc4678f64377e1c9ef7a74fb410e.tar.gz candle-51e51da89687dc4678f64377e1c9ef7a74fb410e.tar.bz2 candle-51e51da89687dc4678f64377e1c9ef7a74fb410e.zip |
Rename the candle crate to candle-core (#301)
* Rename to candle-core.
* More candle-core renaming.
23 files changed, 77 insertions, 76 deletions
diff --git a/candle-book/src/guide/hello_world.md b/candle-book/src/guide/hello_world.md index b1d24d85..a9767d5f 100644 --- a/candle-book/src/guide/hello_world.md +++ b/candle-book/src/guide/hello_world.md @@ -5,8 +5,8 @@ We will now create the hello world of the ML world, building a model capable of Open `src/main.rs` and fill in this content: ```rust -# extern crate candle; -use candle::{DType, Device, Result, Tensor}; +# extern crate candle_core; +use candle_core::{DType, Device, Result, Tensor}; struct Model { first: Tensor, @@ -49,8 +49,8 @@ Now that we have this, we might want to complexify things a bit, for instance by the classical `Linear` layer. We can do as such ```rust -# extern crate candle; -# use candle::{DType, Device, Result, Tensor}; +# extern crate candle_core; +# use candle_core::{DType, Device, Result, Tensor}; struct Linear{ weight: Tensor, bias: Tensor, @@ -79,8 +79,8 @@ impl Model { This will change the model running code into a new function ```rust -# extern crate candle; -# use candle::{DType, Device, Result, Tensor}; +# extern crate candle_core; +# use candle_core::{DType, Device, Result, Tensor}; # struct Linear{ # weight: Tensor, # bias: Tensor, @@ -144,9 +144,9 @@ cargo add --git https://github.com/LaurentMazare/candle.git candle-nn And rewrite our examples using it ```rust -# extern crate candle; +# extern crate candle_core; # extern crate candle_nn; -use candle::{DType, Device, Result, Tensor}; +use candle_core::{DType, Device, Result, Tensor}; use candle_nn::Linear; struct Model { diff --git a/candle-core/Cargo.toml b/candle-core/Cargo.toml index 7c326917..859f139f 100644 --- a/candle-core/Cargo.toml +++ b/candle-core/Cargo.toml @@ -1,5 +1,5 @@ [package] -name = "candle" +name = "candle-core" version = "0.1.0" edition = "2021" diff --git a/candle-core/examples/basics.rs b/candle-core/examples/basics.rs index 88b110e0..d028db66 100644 --- a/candle-core/examples/basics.rs +++ b/candle-core/examples/basics.rs @@ -2,7 +2,7 @@ extern crate intel_mkl_src; use anyhow::Result; -use candle::{Device, Tensor}; +use candle_core::{Device, Tensor}; fn main() -> Result<()> { let a = Tensor::randn(0f32, 1., (2, 3), &Device::Cpu)?; diff --git a/candle-core/examples/cuda_basics.rs b/candle-core/examples/cuda_basics.rs index 645420e5..abff2d1b 100644 --- a/candle-core/examples/cuda_basics.rs +++ b/candle-core/examples/cuda_basics.rs @@ -2,7 +2,7 @@ extern crate intel_mkl_src; use anyhow::Result; -use candle::{Device, Tensor}; +use candle_core::{Device, Tensor}; fn main() -> Result<()> { let device = Device::new_cuda(0)?; diff --git a/candle-core/examples/cuda_sum_benchmark.rs b/candle-core/examples/cuda_sum_benchmark.rs index bb4dc8be..1c8b0136 100644 --- a/candle-core/examples/cuda_sum_benchmark.rs +++ b/candle-core/examples/cuda_sum_benchmark.rs @@ -4,7 +4,7 @@ extern crate intel_mkl_src; use std::str::FromStr; use anyhow::Result; -use candle::{Device, Tensor}; +use candle_core::{Device, Tensor}; fn cos_sin(n: usize, device: &Device) -> Result<Tensor> { let thetas: Vec<_> = (0..n).map(|i| (i as f32 / n as f32)).collect(); diff --git a/candle-core/src/indexer.rs b/candle-core/src/indexer.rs index 6ab209ca..2b6d694b 100644 --- a/candle-core/src/indexer.rs +++ b/candle-core/src/indexer.rs @@ -7,7 +7,7 @@ impl Tensor { /// Intended to be use by the trait `.i()` /// /// ``` - /// # use candle::{Tensor, DType, Device, IndexOp}; + /// # use candle_core::{Tensor, DType, Device, IndexOp}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// /// let c = a.i(0..1)?; @@ -22,7 +22,7 @@ impl Tensor { /// let c = a.i((.., ..=2))?; /// assert_eq!(c.shape().dims(), &[2, 3]); /// - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` fn index(&self, indexers: &[TensorIndexer]) -> Result<Self, Error> { let mut x = self.clone(); diff --git a/candle-core/src/lib.rs b/candle-core/src/lib.rs index 52244052..4fa0c5d3 100644 --- a/candle-core/src/lib.rs +++ b/candle-core/src/lib.rs @@ -1,8 +1,8 @@ //! ML framework for Rust //! //! ```rust -//! use candle::{Tensor, DType, Device}; -//! # use candle::Error; +//! use candle_core::{Tensor, DType, Device}; +//! # use candle_core::Error; //! # fn main() -> Result<(), Error>{ //! //! let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?; diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs index c326a5ac..b958e06d 100644 --- a/candle-core/src/tensor.rs +++ b/candle-core/src/tensor.rs @@ -54,13 +54,13 @@ impl AsRef<Tensor> for Tensor { /// The core struct for manipulating tensors. /// /// ```rust -/// use candle::{Tensor, DType, Device}; +/// use candle_core::{Tensor, DType, Device}; /// /// let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?; /// let b = Tensor::arange(0f32, 12f32, &Device::Cpu)?.reshape((3, 4))?; /// /// let c = a.matmul(&b)?; -/// # Ok::<(), candle::Error>(()) +/// # Ok::<(), candle_core::Error>(()) /// ``` /// /// Tensors are reference counted with [`Arc`] so cloning them is cheap. @@ -163,11 +163,11 @@ impl Tensor { /// Creates a new tensor filled with ones. /// /// ```rust - /// use candle::{Tensor, DType, Device}; + /// use candle_core::{Tensor, DType, Device}; /// let a = Tensor::ones((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::from_slice(&[1.0f32, 1.0, 1.0, 1.0, 1.0, 1.0], (2, 3), &Device::Cpu)?; /// // a == b - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn ones<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> { Self::ones_impl(shape, dtype, device, false) @@ -176,11 +176,11 @@ impl Tensor { /// Creates a new tensor filled with ones with same shape, dtype, and device as the other tensor. /// /// ```rust - /// use candle::{Tensor, DType, Device}; + /// use candle_core::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = a.ones_like()?; /// // b == a + 1 - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn ones_like(&self) -> Result<Self> { Tensor::ones(self.shape(), self.dtype(), self.device()) @@ -208,11 +208,11 @@ impl Tensor { /// Creates a new tensor filled with zeros. /// /// ```rust - /// use candle::{Tensor, DType, Device}; + /// use candle_core::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::from_slice(&[0.0f32, 0.0, 0.0, 0.0, 0.0, 0.0], (2, 3), &Device::Cpu)?; /// // a == b - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn zeros<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> { Self::zeros_impl(shape, dtype, device, false) @@ -222,11 +222,11 @@ impl Tensor { /// tensor. /// /// ```rust - /// use candle::{Tensor, DType, Device}; + /// use candle_core::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = a.zeros_like()?; /// // b is on CPU f32. - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn zeros_like(&self) -> Result<Self> { Tensor::zeros(self.shape(), self.dtype(), self.device()) @@ -516,11 +516,11 @@ impl Tensor { /// be performed. /// /// ```rust - /// use candle::{Tensor, Device}; + /// use candle_core::{Tensor, Device}; /// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?; /// let a = a.affine(4., -2.)?; /// assert_eq!(a.to_vec2::<f32>()?, &[[-2.0, 2.0], [6.0, 10.0]]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn affine(&self, mul: f64, add: f64) -> Result<Self> { let storage = self.storage().affine(self.layout(), mul, add)?; @@ -642,7 +642,7 @@ impl Tensor { /// that the number of elements for each dimension index in `sum_dims` is 1. /// /// ```rust - /// use candle::{Tensor, Device}; + /// use candle_core::{Tensor, Device}; /// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?; /// let s = a.sum_keepdim(0)?; /// assert_eq!(s.to_vec2::<f32>()?, &[[2., 4.]]); @@ -650,7 +650,7 @@ impl Tensor { /// assert_eq!(s.to_vec2::<f32>()?, &[[1.], [5.]]); /// let s = a.sum_keepdim((0, 1))?; /// assert_eq!(s.to_vec2::<f32>()?, &[[6.]]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn sum_keepdim<D: Dims>(&self, sum_dims: D) -> Result<Self> { self.sum_impl(sum_dims, true) @@ -854,12 +854,12 @@ impl Tensor { /// vocabulary size, and `h` the hidden size. /// /// ```rust - /// use candle::{Tensor, Device}; + /// use candle_core::{Tensor, Device}; /// let values = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let ids = Tensor::new(&[2u32, 1u32, 2u32], &Device::Cpu)?; /// let emb = values.embedding(&ids)?; /// assert_eq!(emb.to_vec2::<f32>()?, &[[4., 5.], [2., 3.], [4., 5.]]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn embedding(&self, ids: &Self) -> Result<Self> { if self.rank() != 2 || ids.rank() != 1 { @@ -1191,11 +1191,11 @@ impl Tensor { /// scalar with zero dimensions. /// /// ```rust - /// use candle::{Tensor, Device}; + /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let tensor = tensor.sum_all()?; /// assert_eq!(tensor.to_scalar::<f32>()?, 15.); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn sum_all(&self) -> Result<Tensor> { let dims: Vec<_> = (0..self.rank()).collect(); @@ -1252,11 +1252,11 @@ impl Tensor { /// Flattens the input tensor by reshaping it into a one dimension tensor. /// /// ```rust - /// use candle::{Tensor, Device}; + /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let tensor = tensor.flatten_all()?; /// assert_eq!(tensor.to_vec1::<f32>()?, &[0., 1., 2., 3., 4., 5.]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn flatten_all(&self) -> Result<Tensor> { self.flatten_(None::<usize>, None::<usize>) @@ -1265,13 +1265,13 @@ impl Tensor { /// Returns the sub-tensor fixing the index at `i` on the first dimension. /// /// ```rust - /// use candle::{Tensor, Device}; + /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let t = tensor.get(0)?; /// assert_eq!(t.to_vec1::<f32>()?, &[0., 1.]); /// let t = tensor.get(1)?; /// assert_eq!(t.to_vec1::<f32>()?, &[2., 3.]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn get(&self, i: usize) -> Result<Tensor> { let dims = self.dims(); @@ -1286,11 +1286,11 @@ impl Tensor { /// input are swapped. /// /// ```rust - /// use candle::{Tensor, Device}; + /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let tensor = tensor.t()?; /// assert_eq!(tensor.to_vec2::<f32>()?, &[[0.0, 2.0, 4.0], [1.0, 3.0, 5.0]]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn t(&self) -> Result<Tensor> { let rank = self.rank(); @@ -1433,12 +1433,12 @@ impl Tensor { /// Casts the input tensor to the target `dtype`. /// /// ```rust - /// use candle::{Tensor, Device}; + /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(3.14159265358979f64, &Device::Cpu)?; /// assert_eq!(tensor.to_scalar::<f64>()?, 3.14159265358979); - /// let tensor = tensor.to_dtype(candle::DType::F32)?; + /// let tensor = tensor.to_dtype(candle_core::DType::F32)?; /// assert_eq!(tensor.to_scalar::<f32>()?, 3.1415927); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn to_dtype(&self, dtype: DType) -> Result<Self> { if self.dtype() == dtype { @@ -1483,7 +1483,7 @@ impl Tensor { /// a new storage and copies the data over, the returned tensor is always contiguous. /// /// ```rust - /// # use candle::{Tensor, DType, Device, D}; + /// # use candle_core::{Tensor, DType, Device, D}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// /// let c = a.reshape((1, 6))?; @@ -1491,7 +1491,7 @@ impl Tensor { /// /// let c = a.reshape((3, 2))?; /// assert_eq!(c.shape().dims(), &[3, 2]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn reshape<S: Into<Shape>>(&self, shape: S) -> Result<Tensor> { let shape = shape.into(); @@ -1526,7 +1526,7 @@ impl Tensor { /// Creates a new tensor with the specified dimension removed if its size was one. /// /// ```rust - /// # use candle::{Tensor, DType, Device, D}; + /// # use candle_core::{Tensor, DType, Device, D}; /// let a = Tensor::zeros((2, 3, 1), DType::F32, &Device::Cpu)?; /// /// let c = a.squeeze(2)?; @@ -1534,7 +1534,7 @@ impl Tensor { /// /// let c = a.squeeze(D::Minus1)?; /// assert_eq!(c.shape().dims(), &[2, 3]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn squeeze<D: Dim>(&self, dim: D) -> Result<Self> { // The PyTorch semantics are to return the same tensor if the target dimension @@ -1553,7 +1553,7 @@ impl Tensor { /// Creates a new tensor with a dimension of size one inserted at the specified position. /// /// ```rust - /// # use candle::{Tensor, DType, Device, D}; + /// # use candle_core::{Tensor, DType, Device, D}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// /// let c = a.unsqueeze(0)?; @@ -1561,7 +1561,7 @@ impl Tensor { /// /// let c = a.unsqueeze(D::Minus1)?; /// assert_eq!(c.shape().dims(), &[2, 3, 1]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn unsqueeze<D: Dim>(&self, dim: D) -> Result<Self> { let mut dims = self.dims().to_vec(); @@ -1576,7 +1576,7 @@ impl Tensor { /// All tensors must have the same rank, and the output has one additional rank /// /// ```rust - /// # use candle::{Tensor, DType, Device}; + /// # use candle_core::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// @@ -1585,7 +1585,7 @@ impl Tensor { /// /// let c = Tensor::stack(&[&a, &b], 2)?; /// assert_eq!(c.shape().dims(), &[2, 3, 2]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn stack<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> { if args.is_empty() { @@ -1605,7 +1605,7 @@ impl Tensor { /// the same rank /// /// ```rust - /// # use candle::{Tensor, DType, Device}; + /// # use candle_core::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// @@ -1614,7 +1614,7 @@ impl Tensor { /// /// let c = Tensor::cat(&[&a, &b], 1)?; /// assert_eq!(c.shape().dims(), &[2, 6]); - /// # Ok::<(), candle::Error>(()) + /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> { if args.is_empty() { diff --git a/candle-core/tests/custom_op_tests.rs b/candle-core/tests/custom_op_tests.rs index 5c95dc82..55b5e894 100644 --- a/candle-core/tests/custom_op_tests.rs +++ b/candle-core/tests/custom_op_tests.rs @@ -1,6 +1,6 @@ -use candle::backend::BackendStorage; -use candle::cpu_backend; -use candle::{CpuStorage, CustomOp1, DType, Device, Error, Layout, Result, Shape, Tensor}; +use candle_core::backend::BackendStorage; +use candle_core::cpu_backend; +use candle_core::{CpuStorage, CustomOp1, DType, Device, Error, Layout, Result, Shape, Tensor}; mod test_utils; use test_utils::to_vec1_round; @@ -24,7 +24,7 @@ impl CustomOp1 for Elu { } fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> { - let storage = candle::map_dtype!( + let storage = candle_core::map_dtype!( "elu", s, |s| cpu_backend::unary_map(s, l, |v| fwd(v, self.alpha)), @@ -67,7 +67,7 @@ impl CustomOp1 for EluBackward { } fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> { - let storage = candle::map_dtype!( + let storage = candle_core::map_dtype!( "elu-bwd", s, |s| cpu_backend::unary_map(s, l, |v| bwd(v, self.alpha)), @@ -104,7 +104,7 @@ impl CustomOp1 for EluWithBackward { #[test] fn custom_op1_with_backward() -> Result<()> { let cpu = &Device::Cpu; - let t = candle::Var::new(&[-2f32, 0f32, 2f32], cpu)?; + let t = candle_core::Var::new(&[-2f32, 0f32, 2f32], cpu)?; let elu_t = t.custom_op1(EluWithBackward::new(2.))?; assert_eq!(to_vec1_round(&elu_t, 4)?, &[-1.7293, 0.0, 2.0]); diff --git a/candle-core/tests/display_tests.rs b/candle-core/tests/display_tests.rs index eaa60180..8ab8bb6a 100644 --- a/candle-core/tests/display_tests.rs +++ b/candle-core/tests/display_tests.rs @@ -1,5 +1,5 @@ use anyhow::Result; -use candle::{DType, Device::Cpu, Tensor}; +use candle_core::{DType, Device::Cpu, Tensor}; #[test] fn display_scalar() -> Result<()> { diff --git a/candle-core/tests/grad_tests.rs b/candle-core/tests/grad_tests.rs index 591b504a..f5d7cd14 100644 --- a/candle-core/tests/grad_tests.rs +++ b/candle-core/tests/grad_tests.rs @@ -1,5 +1,5 @@ use anyhow::{Context, Result}; -use candle::{Device, Shape, Tensor, Var}; +use candle_core::{Device, Shape, Tensor, Var}; mod test_utils; fn simple_grad(device: &Device) -> Result<()> { diff --git a/candle-core/tests/indexing_tests.rs b/candle-core/tests/indexing_tests.rs index 122f63b0..1a77b32d 100644 --- a/candle-core/tests/indexing_tests.rs +++ b/candle-core/tests/indexing_tests.rs @@ -1,5 +1,5 @@ use anyhow::Result; -use candle::{Device, IndexOp, Tensor}; +use candle_core::{Device, IndexOp, Tensor}; mod test_utils; diff --git a/candle-core/tests/layout_tests.rs b/candle-core/tests/layout_tests.rs index 29b3b5c0..d7b89605 100644 --- a/candle-core/tests/layout_tests.rs +++ b/candle-core/tests/layout_tests.rs @@ -1,5 +1,6 @@ mod test_utils; use candle::{Device, IndexOp, Result, Tensor}; +use candle_core as candle; fn contiguous(device: &Device) -> Result<()> { let tensor = Tensor::arange(0u32, 24u32, device)?.reshape((2, 3, 4))?; diff --git a/candle-core/tests/tensor_tests.rs b/candle-core/tests/tensor_tests.rs index 2147759d..599c2665 100644 --- a/candle-core/tests/tensor_tests.rs +++ b/candle-core/tests/tensor_tests.rs @@ -1,5 +1,5 @@ mod test_utils; -use candle::{DType, Device, IndexOp, Result, Tensor}; +use candle_core::{DType, Device, IndexOp, Result, Tensor}; fn zeros(device: &Device) -> Result<()> { let tensor = Tensor::zeros((5, 2), DType::F32, device)?; diff --git a/candle-core/tests/test_utils.rs b/candle-core/tests/test_utils.rs index 5f7d3117..0c7ec1b6 100644 --- a/candle-core/tests/test_utils.rs +++ b/candle-core/tests/test_utils.rs @@ -1,6 +1,6 @@ #![allow(dead_code)] -use candle::{Result, Tensor}; +use candle_core::{Result, Tensor}; #[macro_export] macro_rules! test_device { diff --git a/candle-examples/Cargo.toml b/candle-examples/Cargo.toml index 0ec67942..b05799ac 100644 --- a/candle-examples/Cargo.toml +++ b/candle-examples/Cargo.toml @@ -11,7 +11,7 @@ license = "MIT/Apache-2.0" readme = "README.md" [dependencies] -candle = { path = "../candle-core" } +candle = { path = "../candle-core", package = "candle-core" } candle-nn = { path = "../candle-nn" } candle-transformers = { path = "../candle-transformers" } candle-flash-attn = { path = "../candle-flash-attn", optional = true } diff --git a/candle-examples/examples/llama_multiprocess/model.rs b/candle-examples/examples/llama_multiprocess/model.rs index 573eae11..348248f6 100644 --- a/candle-examples/examples/llama_multiprocess/model.rs +++ b/candle-examples/examples/llama_multiprocess/model.rs @@ -106,7 +106,7 @@ impl TensorParallelRowLinear { let rank = comm.rank(); let size = comm.world_size(); let weight = vb.get_sharded("weight", 1, rank, size)?; - Ok(Self::new(Linear::new(weight, None), comm.clone())) + Ok(Self::new(Linear::new(weight, None), comm)) } } @@ -296,8 +296,8 @@ impl CausalSelfAttention { let k = k.transpose(1, 2)?; let v = v.transpose(1, 2)?; let softmax_scale = 1f32 / (self.head_dim as f32).sqrt(); - let y = - candle_flash_attn::flash_attn(q, k, v, softmax_scale, seq_len > 1)?.transpose(1, 2)?; + let y = candle_flash_attn::flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)? + .transpose(1, 2)?; // Convert to contiguous as matmul doesn't support strided vs for now. let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?; let y = self.o_proj.forward(&y)?; @@ -363,7 +363,7 @@ impl Mlp { fn load(vb: VarBuilder, _cfg: &Config, comm: Rc<Comm>) -> Result<Self> { let c_fc1 = TensorParallelColumnLinear::load(vb.pp("gate_proj"), comm.clone())?; let c_fc2 = TensorParallelColumnLinear::load(vb.pp("up_proj"), comm.clone())?; - let c_proj = TensorParallelRowLinear::load(vb.pp("down_proj"), comm.clone())?; + let c_proj = TensorParallelRowLinear::load(vb.pp("down_proj"), comm)?; Ok(Self::new(c_fc1, c_fc2, c_proj)) } } @@ -396,7 +396,7 @@ impl Block { fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Rc<Comm>) -> Result<Self> { let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg, comm.clone())?; - let mlp = Mlp::load(vb.pp("mlp"), cfg, comm.clone())?; + let mlp = Mlp::load(vb.pp("mlp"), cfg, comm)?; let input_layernorm = RmsNorm::load(cfg.hidden_size, vb.pp("input_layernorm"))?; let post_attention_layernorm = RmsNorm::load(cfg.hidden_size, vb.pp("post_attention_layernorm"))?; diff --git a/candle-flash-attn/Cargo.toml b/candle-flash-attn/Cargo.toml index 1bd6ec32..b007d5a4 100644 --- a/candle-flash-attn/Cargo.toml +++ b/candle-flash-attn/Cargo.toml @@ -11,7 +11,7 @@ license = "MIT/Apache-2.0" readme = "README.md" [dependencies] -candle = { path = "../candle-core", features = ["cuda"] } +candle = { path = "../candle-core", features = ["cuda"], package = "candle-core" } half = { version = "2.3.1", features = ["num-traits"] } [build-dependencies] diff --git a/candle-nn/Cargo.toml b/candle-nn/Cargo.toml index 95335323..d65b682e 100644 --- a/candle-nn/Cargo.toml +++ b/candle-nn/Cargo.toml @@ -11,7 +11,7 @@ license = "MIT/Apache-2.0" readme = "README.md" [dependencies] -candle = { path = "../candle-core" } +candle = { path = "../candle-core", package = "candle-core" } thiserror = { workspace = true } intel-mkl-src = { workspace = true, optional = true } safetensors = { workspace = true } diff --git a/candle-pyo3/Cargo.toml b/candle-pyo3/Cargo.toml index b9d0f27f..a98d47c2 100644 --- a/candle-pyo3/Cargo.toml +++ b/candle-pyo3/Cargo.toml @@ -16,7 +16,7 @@ crate-type = ["cdylib"] doc = false [dependencies] -candle = { path = "../candle-core" } +candle = { path = "../candle-core", package = "candle-core" } pyo3 = { version = "0.19.0", features = ["extension-module"] } half = { workspace = true } diff --git a/candle-transformers/Cargo.toml b/candle-transformers/Cargo.toml index 55b54c8c..211b7300 100644 --- a/candle-transformers/Cargo.toml +++ b/candle-transformers/Cargo.toml @@ -11,7 +11,7 @@ license = "MIT/Apache-2.0" readme = "README.md" [dependencies] -candle = { path = "../candle-core" } +candle = { path = "../candle-core", package = "candle-core" } hf-hub = { workspace = true} candle-nn = { path = "../candle-nn" } intel-mkl-src = { workspace = true, optional = true } diff --git a/candle-wasm-examples/llama2-c/Cargo.toml b/candle-wasm-examples/llama2-c/Cargo.toml index 6aae0e59..78c0f1a4 100644 --- a/candle-wasm-examples/llama2-c/Cargo.toml +++ b/candle-wasm-examples/llama2-c/Cargo.toml @@ -11,7 +11,7 @@ license = "MIT/Apache-2.0" readme = "README.md" [dependencies] -candle = { path = "../../candle-core" } +candle = { path = "../../candle-core", package = "candle-core" } candle-nn = { path = "../../candle-nn" } num-traits = { workspace = true } diff --git a/candle-wasm-examples/whisper/Cargo.toml b/candle-wasm-examples/whisper/Cargo.toml index b51d4052..208beb72 100644 --- a/candle-wasm-examples/whisper/Cargo.toml +++ b/candle-wasm-examples/whisper/Cargo.toml @@ -11,7 +11,7 @@ license = "MIT/Apache-2.0" readme = "README.md" [dependencies] -candle = { path = "../../candle-core" } +candle = { path = "../../candle-core", package = "candle-core" } candle-nn = { path = "../../candle-nn" } num-traits = { workspace = true } tokenizers = { workspace = true, features = ["unstable_wasm"] } |