summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2024-05-04 10:14:57 +0200
committerGitHub <noreply@github.com>2024-05-04 10:14:57 +0200
commitb13a82a4387a55df07bec4e2eb6f7a8ebd0b98a2 (patch)
treeaed5a019e7e053900ffa5be57ddfd20bdfad8582
parent59b18d974ec3cad6963b774aa245e23f8c80414f (diff)
downloadcandle-b13a82a4387a55df07bec4e2eb6f7a8ebd0b98a2.tar.gz
candle-b13a82a4387a55df07bec4e2eb6f7a8ebd0b98a2.tar.bz2
candle-b13a82a4387a55df07bec4e2eb6f7a8ebd0b98a2.zip
Separate quantized phi-3 implementation. (#2157)
* Separate quantized phi-3 implementation. * Integrate the quantized phi3 model.= * Small fixes, get the generation to work properly. * Keep the old llama implementation around. * Change the default.
-rw-r--r--candle-core/src/metal_backend/mod.rs3
-rw-r--r--candle-core/src/sort.rs2
-rw-r--r--candle-examples/examples/quantized-phi/main.rs18
-rw-r--r--candle-metal-kernels/src/lib.rs2
-rw-r--r--candle-transformers/src/models/mod.rs1
-rw-r--r--candle-transformers/src/models/phi3.rs8
-rw-r--r--candle-transformers/src/models/quantized_phi3.rs301
7 files changed, 323 insertions, 12 deletions
diff --git a/candle-core/src/metal_backend/mod.rs b/candle-core/src/metal_backend/mod.rs
index c0f6a844..e00566ca 100644
--- a/candle-core/src/metal_backend/mod.rs
+++ b/candle-core/src/metal_backend/mod.rs
@@ -676,9 +676,6 @@ impl BackendStorage for MetalStorage {
}
}
- if layout.is_contiguous() {
- } else {
- }
Ok(Self::new(buffer, device.clone(), el_count, dtype))
}
diff --git a/candle-core/src/sort.rs b/candle-core/src/sort.rs
index 6bfa3ca7..614a37fe 100644
--- a/candle-core/src/sort.rs
+++ b/candle-core/src/sort.rs
@@ -178,7 +178,7 @@ impl crate::CustomOp1 for ArgSort {
device.metal_device(),
&command_buffer,
kernels,
- &name,
+ name,
nrows,
ncols,
ncols_pad,
diff --git a/candle-examples/examples/quantized-phi/main.rs b/candle-examples/examples/quantized-phi/main.rs
index 7d255f58..e2211844 100644
--- a/candle-examples/examples/quantized-phi/main.rs
+++ b/candle-examples/examples/quantized-phi/main.rs
@@ -13,8 +13,9 @@ use candle::Tensor;
use candle_transformers::generation::{LogitsProcessor, Sampling};
use candle_examples::token_output_stream::TokenOutputStream;
-use candle_transformers::models::quantized_llama::ModelWeights as Phi3;
+use candle_transformers::models::quantized_llama::ModelWeights as Phi3b;
use candle_transformers::models::quantized_phi::ModelWeights as Phi2;
+use candle_transformers::models::quantized_phi3::ModelWeights as Phi3;
const DEFAULT_PROMPT: &str = "Write a function to count prime numbers up to N. ";
@@ -24,6 +25,9 @@ enum Which {
Phi2,
#[value(name = "phi-3")]
Phi3,
+ /// Alternative implementation of phi-3, based on llama.
+ #[value(name = "phi-3b")]
+ Phi3b,
}
#[derive(Parser, Debug)]
@@ -84,7 +88,7 @@ struct Args {
repeat_last_n: usize,
/// The model size to use.
- #[arg(long, default_value = "phi-2")]
+ #[arg(long, default_value = "phi-3b")]
which: Which,
}
@@ -96,7 +100,7 @@ impl Args {
let api = hf_hub::api::sync::Api::new()?;
let repo = match self.which {
Which::Phi2 => "microsoft/phi-2",
- Which::Phi3 => "microsoft/Phi-3-mini-4k-instruct",
+ Which::Phi3 | Which::Phi3b => "microsoft/Phi-3-mini-4k-instruct",
};
let api = api.model(repo.to_string());
api.get("tokenizer.json")?
@@ -114,6 +118,11 @@ impl Args {
Which::Phi3 => (
"microsoft/Phi-3-mini-4k-instruct-gguf",
"Phi-3-mini-4k-instruct-q4.gguf",
+ "main",
+ ),
+ Which::Phi3b => (
+ "microsoft/Phi-3-mini-4k-instruct-gguf",
+ "Phi-3-mini-4k-instruct-q4.gguf",
"5eef2ce24766d31909c0b269fe90c817a8f263fb",
),
};
@@ -145,6 +154,7 @@ fn format_size(size_in_bytes: usize) -> String {
enum Model {
Phi2(Phi2),
Phi3(Phi3),
+ Phi3b(Phi3b),
}
impl Model {
@@ -152,6 +162,7 @@ impl Model {
match self {
Self::Phi2(m) => m.forward(xs, pos),
Self::Phi3(m) => m.forward(xs, pos),
+ Self::Phi3b(m) => m.forward(xs, pos),
}
}
}
@@ -203,6 +214,7 @@ fn main() -> anyhow::Result<()> {
match args.which {
Which::Phi2 => Model::Phi2(Phi2::from_gguf(model, &mut file, &device)?),
Which::Phi3 => Model::Phi3(Phi3::from_gguf(model, &mut file, &device)?),
+ Which::Phi3b => Model::Phi3b(Phi3b::from_gguf(model, &mut file, &device)?),
}
};
println!("model built");
diff --git a/candle-metal-kernels/src/lib.rs b/candle-metal-kernels/src/lib.rs
index c08e44fe..814ca0b9 100644
--- a/candle-metal-kernels/src/lib.rs
+++ b/candle-metal-kernels/src/lib.rs
@@ -350,7 +350,7 @@ pub fn call_unary_contiguous_tiled(
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
let tile_size = 2;
- let tiles = length.div_ceil(tile_size);
+ let tiles = (length + tile_size - 1) / tile_size;
encoder.set_compute_pipeline_state(&pipeline);
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 02f84158..de2430a2 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -40,6 +40,7 @@ pub mod quantized_mixformer;
pub mod quantized_moondream;
pub mod quantized_mpt;
pub mod quantized_phi;
+pub mod quantized_phi3;
pub mod quantized_recurrent_gemma;
pub mod quantized_rwkv_v5;
pub mod quantized_rwkv_v6;
diff --git a/candle-transformers/src/models/phi3.rs b/candle-transformers/src/models/phi3.rs
index d305e175..a5e3e9a9 100644
--- a/candle-transformers/src/models/phi3.rs
+++ b/candle-transformers/src/models/phi3.rs
@@ -24,19 +24,19 @@ pub struct Config {
}
impl Config {
- fn head_dim(&self) -> usize {
+ pub fn head_dim(&self) -> usize {
self.hidden_size / self.num_attention_heads
}
}
#[derive(Debug, Clone)]
-struct RotaryEmbedding {
+pub struct RotaryEmbedding {
sin: Tensor,
cos: Tensor,
}
impl RotaryEmbedding {
- fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
+ pub fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
let dim = cfg.head_dim();
let max_seq_len = cfg.max_position_embeddings;
let inv_freq: Vec<_> = (0..dim)
@@ -55,7 +55,7 @@ impl RotaryEmbedding {
})
}
- fn apply_rotary_emb_qkv(
+ pub fn apply_rotary_emb_qkv(
&self,
q: &Tensor,
k: &Tensor,
diff --git a/candle-transformers/src/models/quantized_phi3.rs b/candle-transformers/src/models/quantized_phi3.rs
new file mode 100644
index 00000000..ef404ca0
--- /dev/null
+++ b/candle-transformers/src/models/quantized_phi3.rs
@@ -0,0 +1,301 @@
+use std::collections::HashMap;
+
+use candle::quantized::gguf_file;
+use candle::quantized::QTensor;
+use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
+use candle_nn::{Embedding, RmsNorm};
+
+pub const MAX_SEQ_LEN: usize = 4096;
+
+#[derive(Debug, Clone)]
+struct QLinear {
+ inner: candle::quantized::QMatMul,
+ span: tracing::Span,
+}
+
+impl QLinear {
+ fn new<R: std::io::Read + std::io::Seek>(
+ ct: &gguf_file::Content,
+ r: &mut R,
+ name: &str,
+ device: &Device,
+ ) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
+ let w = ct.tensor(r, &format!("{name}.weight"), device)?;
+ let inner = candle::quantized::QMatMul::from_qtensor(w)?;
+ Ok(Self { inner, span })
+ }
+}
+
+impl Module for QLinear {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(xs)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Mlp {
+ ffn_up: QLinear,
+ ffn_down: QLinear,
+ i_size: usize,
+}
+
+impl Module for Mlp {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let up_states = xs.apply(&self.ffn_up)?;
+ let gate = up_states.narrow(D::Minus1, 0, self.i_size)?;
+ let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?;
+ let up_states = (up_states * gate.silu()?)?;
+ up_states.apply(&self.ffn_down)
+ }
+}
+
+fn rms_norm(w: QTensor, eps: f64) -> Result<RmsNorm> {
+ let w = w.dequantize(&w.device())?;
+ let rms = RmsNorm::new(w, eps);
+ Ok(rms)
+}
+
+#[derive(Debug, Clone)]
+struct LayerWeights {
+ attn_qkv: QLinear,
+ attn_output: QLinear,
+ attn_norm: RmsNorm,
+ ffn_norm: RmsNorm,
+ mlp: Mlp,
+ n_head: usize,
+ n_kv_head: usize,
+ head_dim: usize,
+ cos: Tensor,
+ sin: Tensor,
+ neg_inf: Tensor,
+ kv_cache: Option<(Tensor, Tensor)>,
+ span_attn: tracing::Span,
+ span_rot: tracing::Span,
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> {
+ let shape = mask.shape();
+ let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?;
+ Ok(m)
+}
+
+impl LayerWeights {
+ fn apply_rotary_emb(&self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let _enter = self.span_rot.enter();
+ let (_b_sz, _h, seq_len, _n_embd) = xs.dims4()?;
+ let cos = self.cos.narrow(0, index_pos, seq_len)?;
+ let sin = self.sin.narrow(0, index_pos, seq_len)?;
+ candle_nn::rotary_emb::rope(&xs.contiguous()?, &cos, &sin)
+ }
+
+ fn forward_attn(
+ &mut self,
+ x: &Tensor,
+ mask: Option<&Tensor>,
+ index_pos: usize,
+ ) -> Result<Tensor> {
+ let _enter = self.span_attn.enter();
+ let (b_sz, seq_len, n_embd) = x.dims3()?;
+ let qkv = self.attn_qkv.forward(x)?;
+
+ let query_pos = self.n_head * self.head_dim;
+ let q = qkv.narrow(D::Minus1, 0, query_pos)?;
+ let k = qkv.narrow(D::Minus1, query_pos, self.n_kv_head * self.head_dim)?;
+ let v = qkv.narrow(
+ D::Minus1,
+ query_pos + self.n_kv_head * self.head_dim,
+ self.n_kv_head * self.head_dim,
+ )?;
+
+ let q = q
+ .reshape((b_sz, seq_len, self.n_head, self.head_dim))?
+ .transpose(1, 2)?;
+ let k = k
+ .reshape((b_sz, seq_len, self.n_head, self.head_dim))?
+ .transpose(1, 2)?;
+ let v = v
+ .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
+ .transpose(1, 2)?;
+
+ let q = self.apply_rotary_emb(&q, index_pos)?.contiguous()?;
+ let k = self.apply_rotary_emb(&k, index_pos)?;
+
+ let (k, v) = match &self.kv_cache {
+ None => (k.contiguous()?, v.contiguous()?),
+ Some((k_cache, v_cache)) => {
+ if index_pos == 0 {
+ (k.contiguous()?, v.contiguous()?)
+ } else {
+ let k = Tensor::cat(&[k_cache, &k], 2)?;
+ let v = Tensor::cat(&[v_cache, &v], 2)?;
+ (k.contiguous()?, v.contiguous()?)
+ }
+ }
+ };
+ self.kv_cache = Some((k.clone(), v.clone()));
+
+ let k = crate::utils::repeat_kv(k, self.n_head / self.n_kv_head)?;
+ let v = crate::utils::repeat_kv(v, self.n_head / self.n_kv_head)?;
+
+ let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
+ let att = match mask {
+ None => att,
+ Some(mask) => {
+ let mask = mask.broadcast_as(att.shape())?;
+ masked_fill(&att, &mask, &self.neg_inf)?
+ }
+ };
+ let att = candle_nn::ops::softmax_last_dim(&att)?;
+ // Convert to contiguous as matmul doesn't support strided vs for now.
+ let y = att.matmul(&v.contiguous()?)?;
+ let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
+ let y = self.attn_output.forward(&y)?;
+ Ok(y)
+ }
+}
+
+#[derive(Debug, Clone)]
+pub struct ModelWeights {
+ tok_embeddings: Embedding,
+ layers: Vec<LayerWeights>,
+ output_norm: RmsNorm,
+ output: QLinear,
+ masks: HashMap<usize, Tensor>,
+ span: tracing::Span,
+ span_output: tracing::Span,
+}
+
+fn precomput_freqs_cis(
+ head_dim: usize,
+ freq_base: f32,
+ device: &Device,
+) -> Result<(Tensor, Tensor)> {
+ let theta: Vec<_> = (0..head_dim)
+ .step_by(2)
+ .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
+ .collect();
+ let theta = Tensor::new(theta.as_slice(), device)?;
+ let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
+ .to_dtype(DType::F32)?
+ .reshape((MAX_SEQ_LEN, 1))?
+ .matmul(&theta.reshape((1, theta.elem_count()))?)?;
+ let cos = idx_theta.cos()?;
+ let sin = idx_theta.sin()?;
+ Ok((cos, sin))
+}
+
+impl ModelWeights {
+ pub fn from_gguf<R: std::io::Seek + std::io::Read>(
+ ct: gguf_file::Content,
+ reader: &mut R,
+ device: &Device,
+ ) -> Result<Self> {
+ let md_get = |s: &str| match ct.metadata.get(s) {
+ None => candle::bail!("cannot find {s} in metadata"),
+ Some(v) => Ok(v),
+ };
+
+ // Parameter extraction from metadata.
+ let head_count = md_get("phi3.attention.head_count")?.to_u32()? as usize;
+ let head_count_kv = md_get("phi3.attention.head_count_kv")?.to_u32()? as usize;
+ let block_count = md_get("phi3.block_count")?.to_u32()? as usize;
+ let embedding_length = md_get("phi3.embedding_length")?.to_u32()? as usize;
+ let i_size = md_get("phi3.feed_forward_length")?.to_u32()? as usize;
+ let rope_dim = md_get("phi3.rope.dimension_count")?.to_u32()? as usize;
+ let rms_eps = md_get("phi3.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
+ let (cos, sin) = precomput_freqs_cis(rope_dim, 10_000., device)?;
+ let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
+
+ let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
+ let tok_embeddings = tok_embeddings.dequantize(device)?;
+ let output_norm = rms_norm(ct.tensor(reader, "output_norm.weight", device)?, rms_eps)?;
+ let output = QLinear::new(&ct, reader, "output", device)?;
+ let mut layers = Vec::with_capacity(block_count);
+ for layer_idx in 0..block_count {
+ let prefix = format!("blk.{layer_idx}");
+ let ffn_up = QLinear::new(&ct, reader, &format!("{prefix}.ffn_up"), device)?;
+ let ffn_down = QLinear::new(&ct, reader, &format!("{prefix}.ffn_down"), device)?;
+ let mlp = Mlp {
+ ffn_up,
+ ffn_down,
+ i_size,
+ };
+ let attn_norm = rms_norm(
+ ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?,
+ rms_eps,
+ )?;
+ let ffn_norm = rms_norm(
+ ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?,
+ rms_eps,
+ )?;
+ let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
+ let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
+ layers.push(LayerWeights {
+ attn_qkv: QLinear::new(&ct, reader, &format!("{prefix}.attn_qkv"), device)?,
+ attn_output: QLinear::new(&ct, reader, &format!("{prefix}.attn_output"), device)?,
+ attn_norm,
+ ffn_norm,
+ mlp,
+ n_head: head_count,
+ n_kv_head: head_count_kv,
+ head_dim: embedding_length / head_count,
+ cos: cos.clone(),
+ sin: sin.clone(),
+ neg_inf: neg_inf.clone(),
+ kv_cache: None,
+ span_attn,
+ span_rot,
+ })
+ }
+ let span = tracing::span!(tracing::Level::TRACE, "model");
+ let span_output = tracing::span!(tracing::Level::TRACE, "output");
+ Ok(Self {
+ tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
+ layers,
+ output_norm,
+ output,
+ masks: HashMap::new(),
+ span,
+ span_output,
+ })
+ }
+
+ fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> {
+ if let Some(mask) = self.masks.get(&t) {
+ Ok(mask.clone())
+ } else {
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), device)?;
+ self.masks.insert(t, mask.clone());
+ Ok(mask)
+ }
+ }
+
+ pub fn forward(&mut self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (_b_sz, seq_len) = xs.dims2()?;
+ let mask = if seq_len == 1 {
+ None
+ } else {
+ Some(self.mask(seq_len, xs.device())?)
+ };
+ let _enter = self.span.enter();
+ let mut xs = self.tok_embeddings.forward(xs)?;
+ for layer in self.layers.iter_mut() {
+ let residual = &xs;
+ let ys = xs.apply(&layer.attn_norm)?;
+ let ys = layer.forward_attn(&ys, mask.as_ref(), index_pos)?;
+ let ys = (ys + residual)?;
+ let residual = &ys;
+ let ys = ys.apply(&layer.ffn_norm)?;
+ let ys = layer.mlp.forward(&ys)?;
+ xs = (ys + residual)?
+ }
+ let xs = xs.apply(&self.output_norm)?.i((.., seq_len - 1, ..))?;
+ let _enter = self.span_output.enter();
+ self.output.forward(&xs)
+ }
+}