summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCzxck001 <10724409+Czxck001@users.noreply.github.com>2024-10-13 13:08:40 -0700
committerGitHub <noreply@github.com>2024-10-13 22:08:40 +0200
commitca7cf5cb3bb38d1b735e1db0efdac7eea1a9d43e (patch)
tree8f61fd8b9a4c86b08e50328d051e0acec3945fb3
parent0d96ec31e8be03f844ed0aed636d6217dee9c7bc (diff)
downloadcandle-ca7cf5cb3bb38d1b735e1db0efdac7eea1a9d43e.tar.gz
candle-ca7cf5cb3bb38d1b735e1db0efdac7eea1a9d43e.tar.bz2
candle-ca7cf5cb3bb38d1b735e1db0efdac7eea1a9d43e.zip
Add Stable Diffusion 3 Example (#2558)
* Add stable diffusion 3 example Add get_qkv_linear to handle different dimensionality in linears Add stable diffusion 3 example Add use_quant_conv and use_post_quant_conv for vae in stable diffusion adapt existing AutoEncoderKLConfig to the change add forward_until_encoder_layer to ClipTextTransformer rename sd3 config to sd3_medium in mmdit; minor clean-up Enable flash-attn for mmdit impl when the feature is enabled. Add sd3 example codebase add document crediting references pass the cargo fmt test pass the clippy test * fix typos * expose cfg_scale and time_shift as options * Replace the sample image with JPG version. Change image output format accordingly. * make meaningful error messages * remove the tail-end assignment in sd3_vae_vb_rename * remove the CUDA requirement * use default_value in clap args * add use_flash_attn to turn on/off flash-attn for MMDiT at runtime * resolve clippy errors and warnings * use default_value_t * Pin the web-sys dependency. * Clippy fix. --------- Co-authored-by: Laurent <laurent.mazare@gmail.com>
-rw-r--r--candle-examples/Cargo.toml3
-rw-r--r--candle-examples/examples/stable-diffusion-3/README.md54
-rw-r--r--candle-examples/examples/stable-diffusion-3/assets/stable-diffusion-3.jpgbin0 -> 83401 bytes
-rw-r--r--candle-examples/examples/stable-diffusion-3/clip.rs201
-rw-r--r--candle-examples/examples/stable-diffusion-3/main.rs185
-rw-r--r--candle-examples/examples/stable-diffusion-3/sampling.rs55
-rw-r--r--candle-examples/examples/stable-diffusion-3/vae.rs93
-rw-r--r--candle-transformers/src/models/mmdit/blocks.rs54
-rw-r--r--candle-transformers/src/models/mmdit/model.rs8
-rw-r--r--candle-transformers/src/models/mmdit/projections.rs1
-rw-r--r--candle-transformers/src/models/stable_diffusion/attention.rs26
-rw-r--r--candle-transformers/src/models/stable_diffusion/clip.rs31
-rw-r--r--candle-transformers/src/models/stable_diffusion/mod.rs10
-rw-r--r--candle-transformers/src/models/stable_diffusion/vae.rs61
-rw-r--r--candle-wasm-examples/yolo/Cargo.toml2
-rw-r--r--candle-wasm-tests/tests/quantized_tests.rs1
16 files changed, 751 insertions, 34 deletions
diff --git a/candle-examples/Cargo.toml b/candle-examples/Cargo.toml
index 0c1219d7..d3e23b92 100644
--- a/candle-examples/Cargo.toml
+++ b/candle-examples/Cargo.toml
@@ -122,3 +122,6 @@ required-features = ["onnx"]
[[example]]
name = "colpali"
required-features = ["pdf2image"]
+
+[[example]]
+name = "stable-diffusion-3" \ No newline at end of file
diff --git a/candle-examples/examples/stable-diffusion-3/README.md b/candle-examples/examples/stable-diffusion-3/README.md
new file mode 100644
index 00000000..746a31fa
--- /dev/null
+++ b/candle-examples/examples/stable-diffusion-3/README.md
@@ -0,0 +1,54 @@
+# candle-stable-diffusion-3: Candle Implementation of Stable Diffusion 3 Medium
+
+![](assets/stable-diffusion-3.jpg)
+
+*A cute rusty robot holding a candle torch in its hand, with glowing neon text \"LETS GO RUSTY\" displayed on its chest, bright background, high quality, 4k*
+
+Stable Diffusion 3 Medium is a text-to-image model based on Multimodal Diffusion Transformer (MMDiT) architecture.
+
+- [huggingface repo](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
+- [research paper](https://arxiv.org/pdf/2403.03206)
+- [announcement blog post](https://stability.ai/news/stable-diffusion-3-medium)
+
+## Getting access to the weights
+
+The weights of Stable Diffusion 3 Medium is released by Stability AI under the Stability Community License. You will need to accept the conditions and acquire a license by visiting the [repo on HuggingFace Hub](https://huggingface.co/stabilityai/stable-diffusion-3-medium) to gain access to the weights for your HuggingFace account.
+
+On the first run, the weights will be automatically downloaded from the Huggingface Hub. You might be prompted to configure a [Huggingface User Access Tokens](https://huggingface.co/docs/hub/en/security-tokens) (recommended) on your computer if you haven't done that before. After the download, the weights will be [cached](https://huggingface.co/docs/datasets/en/cache) and remain accessible locally.
+
+## Running the model
+
+```shell
+cargo run --example stable-diffusion-3 --release --features=cuda -- \
+ --height 1024 --width 1024 \
+ --prompt 'A cute rusty robot holding a candle torch in its hand, with glowing neon text \"LETS GO RUSTY\" displayed on its chest, bright background, high quality, 4k'
+```
+
+To display other options available,
+
+```shell
+cargo run --example stable-diffusion-3 --release --features=cuda -- --help
+```
+
+If GPU supports, Flash-Attention is a strongly recommended feature as it can greatly improve the speed of inference, as MMDiT is a transformer model heavily depends on attentions. To utilize [candle-flash-attn](https://github.com/huggingface/candle/tree/main/candle-flash-attn) in the demo, you will need both `--features flash-attn` and `--use-flash-attn`.
+
+```shell
+cargo run --example stable-diffusion-3 --release --features=cuda,flash-attn -- --use-flash-attn ...
+```
+
+## Performance Benchmark
+
+Below benchmark is done by generating 1024-by-1024 image from 28 steps of Euler sampling and measure the average speed (iteration per seconds).
+
+[candle](https://github.com/huggingface/candle) and [candle-flash-attn](https://github.com/huggingface/candle/tree/main/candle-flash-attn) is based on the commit of [0d96ec3](https://github.com/huggingface/candle/commit/0d96ec31e8be03f844ed0aed636d6217dee9c7bc).
+
+System specs (Desktop PCIE 5 x8/x8 dual-GPU setup):
+
+- Operating System: Ubuntu 23.10
+- CPU: i9 12900K w/o overclocking.
+- RAM: 64G dual-channel DDR5 @ 4800 MT/s
+
+| Speed (iter/s) | w/o flash-attn | w/ flash-attn |
+| -------------- | -------------- | ------------- |
+| RTX 3090 Ti | 0.83 | 2.15 |
+| RTX 4090 | 1.72 | 4.06 |
diff --git a/candle-examples/examples/stable-diffusion-3/assets/stable-diffusion-3.jpg b/candle-examples/examples/stable-diffusion-3/assets/stable-diffusion-3.jpg
new file mode 100644
index 00000000..58ca16c3
--- /dev/null
+++ b/candle-examples/examples/stable-diffusion-3/assets/stable-diffusion-3.jpg
Binary files differ
diff --git a/candle-examples/examples/stable-diffusion-3/clip.rs b/candle-examples/examples/stable-diffusion-3/clip.rs
new file mode 100644
index 00000000..77263d96
--- /dev/null
+++ b/candle-examples/examples/stable-diffusion-3/clip.rs
@@ -0,0 +1,201 @@
+use anyhow::{Error as E, Ok, Result};
+use candle::{DType, IndexOp, Module, Tensor, D};
+use candle_transformers::models::{stable_diffusion, t5};
+use tokenizers::tokenizer::Tokenizer;
+
+struct ClipWithTokenizer {
+ clip: stable_diffusion::clip::ClipTextTransformer,
+ config: stable_diffusion::clip::Config,
+ tokenizer: Tokenizer,
+ max_position_embeddings: usize,
+}
+
+impl ClipWithTokenizer {
+ fn new(
+ vb: candle_nn::VarBuilder,
+ config: stable_diffusion::clip::Config,
+ tokenizer_path: &str,
+ max_position_embeddings: usize,
+ ) -> Result<Self> {
+ let clip = stable_diffusion::clip::ClipTextTransformer::new(vb, &config)?;
+ let path_buf = hf_hub::api::sync::Api::new()?
+ .model(tokenizer_path.to_string())
+ .get("tokenizer.json")?;
+ let tokenizer = Tokenizer::from_file(path_buf.to_str().ok_or(E::msg(
+ "Failed to serialize huggingface PathBuf of CLIP tokenizer",
+ ))?)
+ .map_err(E::msg)?;
+ Ok(Self {
+ clip,
+ config,
+ tokenizer,
+ max_position_embeddings,
+ })
+ }
+
+ fn encode_text_to_embedding(
+ &self,
+ prompt: &str,
+ device: &candle::Device,
+ ) -> Result<(Tensor, Tensor)> {
+ let pad_id = match &self.config.pad_with {
+ Some(padding) => *self
+ .tokenizer
+ .get_vocab(true)
+ .get(padding.as_str())
+ .ok_or(E::msg("Failed to tokenize CLIP padding."))?,
+ None => *self
+ .tokenizer
+ .get_vocab(true)
+ .get("<|endoftext|>")
+ .ok_or(E::msg("Failed to tokenize CLIP end-of-text."))?,
+ };
+
+ let mut tokens = self
+ .tokenizer
+ .encode(prompt, true)
+ .map_err(E::msg)?
+ .get_ids()
+ .to_vec();
+
+ let eos_position = tokens.len() - 1;
+
+ while tokens.len() < self.max_position_embeddings {
+ tokens.push(pad_id)
+ }
+ let tokens = Tensor::new(tokens.as_slice(), device)?.unsqueeze(0)?;
+ let (text_embeddings, text_embeddings_penultimate) = self
+ .clip
+ .forward_until_encoder_layer(&tokens, usize::MAX, -2)?;
+ let text_embeddings_pooled = text_embeddings.i((0, eos_position, ..))?;
+
+ Ok((text_embeddings_penultimate, text_embeddings_pooled))
+ }
+}
+
+struct T5WithTokenizer {
+ t5: t5::T5EncoderModel,
+ tokenizer: Tokenizer,
+ max_position_embeddings: usize,
+}
+
+impl T5WithTokenizer {
+ fn new(vb: candle_nn::VarBuilder, max_position_embeddings: usize) -> Result<Self> {
+ let api = hf_hub::api::sync::Api::new()?;
+ let repo = api.repo(hf_hub::Repo::with_revision(
+ "google/t5-v1_1-xxl".to_string(),
+ hf_hub::RepoType::Model,
+ "refs/pr/2".to_string(),
+ ));
+ let config_filename = repo.get("config.json")?;
+ let config = std::fs::read_to_string(config_filename)?;
+ let config: t5::Config = serde_json::from_str(&config)?;
+ let model = t5::T5EncoderModel::load(vb, &config)?;
+
+ let tokenizer_filename = api
+ .model("lmz/mt5-tokenizers".to_string())
+ .get("t5-v1_1-xxl.tokenizer.json")?;
+
+ let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
+ Ok(Self {
+ t5: model,
+ tokenizer,
+ max_position_embeddings,
+ })
+ }
+
+ fn encode_text_to_embedding(
+ &mut self,
+ prompt: &str,
+ device: &candle::Device,
+ ) -> Result<Tensor> {
+ let mut tokens = self
+ .tokenizer
+ .encode(prompt, true)
+ .map_err(E::msg)?
+ .get_ids()
+ .to_vec();
+ tokens.resize(self.max_position_embeddings, 0);
+ let input_token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?;
+ let embeddings = self.t5.forward(&input_token_ids)?;
+ Ok(embeddings)
+ }
+}
+
+pub struct StableDiffusion3TripleClipWithTokenizer {
+ clip_l: ClipWithTokenizer,
+ clip_g: ClipWithTokenizer,
+ clip_g_text_projection: candle_nn::Linear,
+ t5: T5WithTokenizer,
+}
+
+impl StableDiffusion3TripleClipWithTokenizer {
+ pub fn new(vb_fp16: candle_nn::VarBuilder, vb_fp32: candle_nn::VarBuilder) -> Result<Self> {
+ let max_position_embeddings = 77usize;
+ let clip_l = ClipWithTokenizer::new(
+ vb_fp16.pp("clip_l.transformer"),
+ stable_diffusion::clip::Config::sdxl(),
+ "openai/clip-vit-large-patch14",
+ max_position_embeddings,
+ )?;
+
+ let clip_g = ClipWithTokenizer::new(
+ vb_fp16.pp("clip_g.transformer"),
+ stable_diffusion::clip::Config::sdxl2(),
+ "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
+ max_position_embeddings,
+ )?;
+
+ let text_projection = candle_nn::linear_no_bias(
+ 1280,
+ 1280,
+ vb_fp16.pp("clip_g.transformer.text_projection"),
+ )?;
+
+ // Current T5 implementation does not support fp16, so we use fp32 VarBuilder for T5.
+ // This is a temporary workaround until the T5 implementation is updated to support fp16.
+ // Also see:
+ // https://github.com/huggingface/candle/issues/2480
+ // https://github.com/huggingface/candle/pull/2481
+ let t5 = T5WithTokenizer::new(vb_fp32.pp("t5xxl.transformer"), max_position_embeddings)?;
+
+ Ok(Self {
+ clip_l,
+ clip_g,
+ clip_g_text_projection: text_projection,
+ t5,
+ })
+ }
+
+ pub fn encode_text_to_embedding(
+ &mut self,
+ prompt: &str,
+ device: &candle::Device,
+ ) -> Result<(Tensor, Tensor)> {
+ let (clip_l_embeddings, clip_l_embeddings_pooled) =
+ self.clip_l.encode_text_to_embedding(prompt, device)?;
+ let (clip_g_embeddings, clip_g_embeddings_pooled) =
+ self.clip_g.encode_text_to_embedding(prompt, device)?;
+
+ let clip_g_embeddings_pooled = self
+ .clip_g_text_projection
+ .forward(&clip_g_embeddings_pooled.unsqueeze(0)?)?
+ .squeeze(0)?;
+
+ let y = Tensor::cat(&[&clip_l_embeddings_pooled, &clip_g_embeddings_pooled], 0)?
+ .unsqueeze(0)?;
+ let clip_embeddings_concat = Tensor::cat(
+ &[&clip_l_embeddings, &clip_g_embeddings],
+ D::Minus1,
+ )?
+ .pad_with_zeros(D::Minus1, 0, 2048)?;
+
+ let t5_embeddings = self
+ .t5
+ .encode_text_to_embedding(prompt, device)?
+ .to_dtype(DType::F16)?;
+ let context = Tensor::cat(&[&clip_embeddings_concat, &t5_embeddings], D::Minus2)?;
+
+ Ok((context, y))
+ }
+}
diff --git a/candle-examples/examples/stable-diffusion-3/main.rs b/candle-examples/examples/stable-diffusion-3/main.rs
new file mode 100644
index 00000000..164ae420
--- /dev/null
+++ b/candle-examples/examples/stable-diffusion-3/main.rs
@@ -0,0 +1,185 @@
+mod clip;
+mod sampling;
+mod vae;
+
+use candle::{DType, IndexOp, Tensor};
+use candle_transformers::models::mmdit::model::{Config as MMDiTConfig, MMDiT};
+
+use crate::clip::StableDiffusion3TripleClipWithTokenizer;
+use crate::vae::{build_sd3_vae_autoencoder, sd3_vae_vb_rename};
+
+use anyhow::{Ok, Result};
+use clap::Parser;
+
+#[derive(Parser)]
+#[command(author, version, about, long_about = None)]
+struct Args {
+ /// The prompt to be used for image generation.
+ #[arg(
+ long,
+ default_value = "A cute rusty robot holding a candle torch in its hand, \
+ with glowing neon text \"LETS GO RUSTY\" displayed on its chest, \
+ bright background, high quality, 4k"
+ )]
+ prompt: String,
+
+ #[arg(long, default_value = "")]
+ uncond_prompt: String,
+
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ /// The CUDA device ID to use.
+ #[arg(long, default_value = "0")]
+ cuda_device_id: usize,
+
+ /// Enable tracing (generates a trace-timestamp.json file).
+ #[arg(long)]
+ tracing: bool,
+
+ /// Use flash_attn to accelerate attention operation in the MMDiT.
+ #[arg(long)]
+ use_flash_attn: bool,
+
+ /// The height in pixels of the generated image.
+ #[arg(long, default_value_t = 1024)]
+ height: usize,
+
+ /// The width in pixels of the generated image.
+ #[arg(long, default_value_t = 1024)]
+ width: usize,
+
+ /// The seed to use when generating random samples.
+ #[arg(long, default_value_t = 28)]
+ num_inference_steps: usize,
+
+ // CFG scale.
+ #[arg(long, default_value_t = 4.0)]
+ cfg_scale: f64,
+
+ // Time shift factor (alpha).
+ #[arg(long, default_value_t = 3.0)]
+ time_shift: f64,
+
+ /// The seed to use when generating random samples.
+ #[arg(long)]
+ seed: Option<u64>,
+}
+
+fn main() -> Result<()> {
+ let args = Args::parse();
+ // Your main code here
+ run(args)
+}
+
+fn run(args: Args) -> Result<()> {
+ use tracing_chrome::ChromeLayerBuilder;
+ use tracing_subscriber::prelude::*;
+
+ let Args {
+ prompt,
+ uncond_prompt,
+ cpu,
+ cuda_device_id,
+ tracing,
+ use_flash_attn,
+ height,
+ width,
+ num_inference_steps,
+ cfg_scale,
+ time_shift,
+ seed,
+ } = args;
+
+ let _guard = if tracing {
+ let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
+ tracing_subscriber::registry().with(chrome_layer).init();
+ Some(guard)
+ } else {
+ None
+ };
+
+ // TODO: Support and test on Metal.
+ let device = if cpu {
+ candle::Device::Cpu
+ } else {
+ candle::Device::cuda_if_available(cuda_device_id)?
+ };
+
+ let api = hf_hub::api::sync::Api::new()?;
+ let sai_repo = {
+ let name = "stabilityai/stable-diffusion-3-medium";
+ api.repo(hf_hub::Repo::model(name.to_string()))
+ };
+ let model_file = sai_repo.get("sd3_medium_incl_clips_t5xxlfp16.safetensors")?;
+ let vb_fp16 = unsafe {
+ candle_nn::VarBuilder::from_mmaped_safetensors(&[model_file.clone()], DType::F16, &device)?
+ };
+
+ let (context, y) = {
+ let vb_fp32 = unsafe {
+ candle_nn::VarBuilder::from_mmaped_safetensors(
+ &[model_file.clone()],
+ DType::F32,
+ &device,
+ )?
+ };
+ let mut triple = StableDiffusion3TripleClipWithTokenizer::new(
+ vb_fp16.pp("text_encoders"),
+ vb_fp32.pp("text_encoders"),
+ )?;
+ let (context, y) = triple.encode_text_to_embedding(prompt.as_str(), &device)?;
+ let (context_uncond, y_uncond) =
+ triple.encode_text_to_embedding(uncond_prompt.as_str(), &device)?;
+ (
+ Tensor::cat(&[context, context_uncond], 0)?,
+ Tensor::cat(&[y, y_uncond], 0)?,
+ )
+ };
+
+ let x = {
+ let mmdit = MMDiT::new(
+ &MMDiTConfig::sd3_medium(),
+ use_flash_attn,
+ vb_fp16.pp("model.diffusion_model"),
+ )?;
+
+ if let Some(seed) = seed {
+ device.set_seed(seed)?;
+ }
+ let start_time = std::time::Instant::now();
+ let x = sampling::euler_sample(
+ &mmdit,
+ &y,
+ &context,
+ num_inference_steps,
+ cfg_scale,
+ time_shift,
+ height,
+ width,
+ )?;
+ let dt = start_time.elapsed().as_secs_f32();
+ println!(
+ "Sampling done. {num_inference_steps} steps. {:.2}s. Average rate: {:.2} iter/s",
+ dt,
+ num_inference_steps as f32 / dt
+ );
+ x
+ };
+
+ let img = {
+ let vb_vae = vb_fp16
+ .clone()
+ .rename_f(sd3_vae_vb_rename)
+ .pp("first_stage_model");
+ let autoencoder = build_sd3_vae_autoencoder(vb_vae)?;
+
+ // Apply TAESD3 scale factor. Seems to be significantly improving the quality of the image.
+ // https://github.com/comfyanonymous/ComfyUI/blob/3c60ecd7a83da43d694e26a77ca6b93106891251/nodes.py#L721-L723
+ autoencoder.decode(&((x.clone() / 1.5305)? + 0.0609)?)?
+ };
+ let img = ((img.clamp(-1f32, 1f32)? + 1.0)? * 127.5)?.to_dtype(candle::DType::U8)?;
+ candle_examples::save_image(&img.i(0)?, "out.jpg")?;
+ Ok(())
+}
diff --git a/candle-examples/examples/stable-diffusion-3/sampling.rs b/candle-examples/examples/stable-diffusion-3/sampling.rs
new file mode 100644
index 00000000..147d8e73
--- /dev/null
+++ b/candle-examples/examples/stable-diffusion-3/sampling.rs
@@ -0,0 +1,55 @@
+use anyhow::{Ok, Result};
+use candle::{DType, Tensor};
+
+use candle_transformers::models::flux;
+use candle_transformers::models::mmdit::model::MMDiT; // for the get_noise function
+
+#[allow(clippy::too_many_arguments)]
+pub fn euler_sample(
+ mmdit: &MMDiT,
+ y: &Tensor,
+ context: &Tensor,
+ num_inference_steps: usize,
+ cfg_scale: f64,
+ time_shift: f64,
+ height: usize,
+ width: usize,
+) -> Result<Tensor> {
+ let mut x = flux::sampling::get_noise(1, height, width, y.device())?.to_dtype(DType::F16)?;
+ let sigmas = (0..=num_inference_steps)
+ .map(|x| x as f64 / num_inference_steps as f64)
+ .rev()
+ .map(|x| time_snr_shift(time_shift, x))
+ .collect::<Vec<f64>>();
+
+ for window in sigmas.windows(2) {
+ let (s_curr, s_prev) = match window {
+ [a, b] => (a, b),
+ _ => continue,
+ };
+
+ let timestep = (*s_curr) * 1000.0;
+ let noise_pred = mmdit.forward(
+ &Tensor::cat(&[x.clone(), x.clone()], 0)?,
+ &Tensor::full(timestep, (2,), x.device())?.contiguous()?,
+ y,
+ context,
+ )?;
+ x = (x + (apply_cfg(cfg_scale, &noise_pred)? * (*s_prev - *s_curr))?)?;
+ }
+ Ok(x)
+}
+
+// The "Resolution-dependent shifting of timestep schedules" recommended in the SD3 tech report paper
+// https://arxiv.org/pdf/2403.03206
+// Following the implementation in ComfyUI:
+// https://github.com/comfyanonymous/ComfyUI/blob/3c60ecd7a83da43d694e26a77ca6b93106891251/
+// comfy/model_sampling.py#L181
+fn time_snr_shift(alpha: f64, t: f64) -> f64 {
+ alpha * t / (1.0 + (alpha - 1.0) * t)
+}
+
+fn apply_cfg(cfg_scale: f64, noise_pred: &Tensor) -> Result<Tensor> {
+ Ok(((cfg_scale * noise_pred.narrow(0, 0, 1)?)?
+ - ((cfg_scale - 1.0) * noise_pred.narrow(0, 1, 1)?)?)?)
+}
diff --git a/candle-examples/examples/stable-diffusion-3/vae.rs b/candle-examples/examples/stable-diffusion-3/vae.rs
new file mode 100644
index 00000000..708e472e
--- /dev/null
+++ b/candle-examples/examples/stable-diffusion-3/vae.rs
@@ -0,0 +1,93 @@
+use anyhow::{Ok, Result};
+use candle_transformers::models::stable_diffusion::vae;
+
+pub fn build_sd3_vae_autoencoder(vb: candle_nn::VarBuilder) -> Result<vae::AutoEncoderKL> {
+ let config = vae::AutoEncoderKLConfig {
+ block_out_channels: vec![128, 256, 512, 512],
+ layers_per_block: 2,
+ latent_channels: 16,
+ norm_num_groups: 32,
+ use_quant_conv: false,
+ use_post_quant_conv: false,
+ };
+ Ok(vae::AutoEncoderKL::new(vb, 3, 3, config)?)
+}
+
+pub fn sd3_vae_vb_rename(name: &str) -> String {
+ let parts: Vec<&str> = name.split('.').collect();
+ let mut result = Vec::new();
+ let mut i = 0;
+
+ while i < parts.len() {
+ match parts[i] {
+ "down_blocks" => {
+ result.push("down");
+ }
+ "mid_block" => {
+ result.push("mid");
+ }
+ "up_blocks" => {
+ result.push("up");
+ match parts[i + 1] {
+ // Reverse the order of up_blocks.
+ "0" => result.push("3"),
+ "1" => result.push("2"),
+ "2" => result.push("1"),
+ "3" => result.push("0"),
+ _ => {}
+ }
+ i += 1; // Skip the number after up_blocks.
+ }
+ "resnets" => {
+ if i > 0 && parts[i - 1] == "mid_block" {
+ match parts[i + 1] {
+ "0" => result.push("block_1"),
+ "1" => result.push("block_2"),
+ _ => {}
+ }
+ i += 1; // Skip the number after resnets.
+ } else {
+ result.push("block");
+ }
+ }
+ "downsamplers" => {
+ result.push("downsample");
+ i += 1; // Skip the 0 after downsamplers.
+ }
+ "conv_shortcut" => {
+ result.push("nin_shortcut");
+ }
+ "attentions" => {
+ if parts[i + 1] == "0" {
+ result.push("attn_1")
+ }
+ i += 1; // Skip the number after attentions.
+ }
+ "group_norm" => {
+ result.push("norm");
+ }
+ "query" => {
+ result.push("q");
+ }
+ "key" => {
+ result.push("k");
+ }
+ "value" => {
+ result.push("v");
+ }
+ "proj_attn" => {
+ result.push("proj_out");
+ }
+ "conv_norm_out" => {
+ result.push("norm_out");
+ }
+ "upsamplers" => {
+ result.push("upsample");
+ i += 1; // Skip the 0 after upsamplers.
+ }
+ part => result.push(part),
+ }
+ i += 1;
+ }
+ result.join(".")
+}
diff --git a/candle-transformers/src/models/mmdit/blocks.rs b/candle-transformers/src/models/mmdit/blocks.rs
index e2b924a0..a1777f91 100644
--- a/candle-transformers/src/models/mmdit/blocks.rs
+++ b/candle-transformers/src/models/mmdit/blocks.rs
@@ -194,10 +194,16 @@ pub struct JointBlock {
x_block: DiTBlock,
context_block: DiTBlock,
num_heads: usize,
+ use_flash_attn: bool,
}
impl JointBlock {
- pub fn new(hidden_size: usize, num_heads: usize, vb: nn::VarBuilder) -> Result<Self> {
+ pub fn new(
+ hidden_size: usize,
+ num_heads: usize,
+ use_flash_attn: bool,
+ vb: nn::VarBuilder,
+ ) -> Result<Self> {
let x_block = DiTBlock::new(hidden_size, num_heads, vb.pp("x_block"))?;
let context_block = DiTBlock::new(hidden_size, num_heads, vb.pp("context_block"))?;
@@ -205,13 +211,15 @@ impl JointBlock {
x_block,
context_block,
num_heads,
+ use_flash_attn,
})
}
pub fn forward(&self, context: &Tensor, x: &Tensor, c: &Tensor) -> Result<(Tensor, Tensor)> {
let (context_qkv, context_interm) = self.context_block.pre_attention(context, c)?;
let (x_qkv, x_interm) = self.x_block.pre_attention(x, c)?;
- let (context_attn, x_attn) = joint_attn(&context_qkv, &x_qkv, self.num_heads)?;
+ let (context_attn, x_attn) =
+ joint_attn(&context_qkv, &x_qkv, self.num_heads, self.use_flash_attn)?;
let context_out =
self.context_block
.post_attention(&context_attn, context, &context_interm)?;
@@ -224,16 +232,23 @@ pub struct ContextQkvOnlyJointBlock {
x_block: DiTBlock,
context_block: QkvOnlyDiTBlock,
num_heads: usize,
+ use_flash_attn: bool,
}
impl ContextQkvOnlyJointBlock {
- pub fn new(hidden_size: usize, num_heads: usize, vb: nn::VarBuilder) -> Result<Self> {
+ pub fn new(
+ hidden_size: usize,
+ num_heads: usize,
+ use_flash_attn: bool,
+ vb: nn::VarBuilder,
+ ) -> Result<Self> {
let x_block = DiTBlock::new(hidden_size, num_heads, vb.pp("x_block"))?;
let context_block = QkvOnlyDiTBlock::new(hidden_size, num_heads, vb.pp("context_block"))?;
Ok(Self {
x_block,
context_block,
num_heads,
+ use_flash_attn,
})
}
@@ -241,7 +256,7 @@ impl ContextQkvOnlyJointBlock {
let context_qkv = self.context_block.pre_attention(context, c)?;
let (x_qkv, x_interm) = self.x_block.pre_attention(x, c)?;
- let (_, x_attn) = joint_attn(&context_qkv, &x_qkv, self.num_heads)?;
+ let (_, x_attn) = joint_attn(&context_qkv, &x_qkv, self.num_heads, self.use_flash_attn)?;
let x_out = self.x_block.post_attention(&x_attn, x, &x_interm)?;
Ok(x_out)
@@ -266,7 +281,28 @@ fn flash_compatible_attention(
attn_scores.reshape(q_dims_for_matmul)?.transpose(1, 2)
}
-fn joint_attn(context_qkv: &Qkv, x_qkv: &Qkv, num_heads: usize) -> Result<(Tensor, Tensor)> {
+#[cfg(feature = "flash-attn")]
+fn flash_attn(
+ q: &Tensor,
+ k: &Tensor,
+ v: &Tensor,
+ softmax_scale: f32,
+ causal: bool,
+) -> Result<Tensor> {
+ candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
+}
+
+#[cfg(not(feature = "flash-attn"))]
+fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
+ unimplemented!("compile with '--features flash-attn'")
+}
+
+fn joint_attn(
+ context_qkv: &Qkv,
+ x_qkv: &Qkv,
+ num_heads: usize,
+ use_flash_attn: bool,
+) -> Result<(Tensor, Tensor)> {
let qkv = Qkv {
q: Tensor::cat(&[&context_qkv.q, &x_qkv.q], 1)?,
k: Tensor::cat(&[&context_qkv.k, &x_qkv.k], 1)?,
@@ -282,8 +318,12 @@ fn joint_attn(context_qkv: &Qkv, x_qkv: &Qkv, num_heads: usize) -> Result<(Tenso
let headdim = qkv.q.dim(D::Minus1)?;
let softmax_scale = 1.0 / (headdim as f64).sqrt();
- // let attn: Tensor = candle_flash_attn::flash_attn(&qkv.q, &qkv.k, &qkv.v, softmax_scale as f32, false)?;
- let attn = flash_compatible_attention(&qkv.q, &qkv.k, &qkv.v, softmax_scale as f32)?;
+
+ let attn = if use_flash_attn {
+ flash_attn(&qkv.q, &qkv.k, &qkv.v, softmax_scale as f32, false)?
+ } else {
+ flash_compatible_attention(&qkv.q, &qkv.k, &qkv.v, softmax_scale as f32)?
+ };
let attn = attn.reshape((batch_size, seqlen, ()))?;
let context_qkv_seqlen = context_qkv.q.dim(1)?;
diff --git a/candle-transformers/src/models/mmdit/model.rs b/candle-transformers/src/models/mmdit/model.rs
index 1523836c..864b6623 100644
--- a/candle-transformers/src/models/mmdit/model.rs
+++ b/candle-transformers/src/models/mmdit/model.rs
@@ -23,7 +23,7 @@ pub struct Config {
}
impl Config {
- pub fn sd3() -> Self {
+ pub fn sd3_medium() -> Self {
Self {
patch_size: 2,
in_channels: 16,
@@ -49,7 +49,7 @@ pub struct MMDiT {
}
impl MMDiT {
- pub fn new(cfg: &Config, vb: nn::VarBuilder) -> Result<Self> {
+ pub fn new(cfg: &Config, use_flash_attn: bool, vb: nn::VarBuilder) -> Result<Self> {
let hidden_size = cfg.head_size * cfg.depth;
let core = MMDiTCore::new(
cfg.depth,
@@ -57,6 +57,7 @@ impl MMDiT {
cfg.depth,
cfg.patch_size,
cfg.out_channels,
+ use_flash_attn,
vb.clone(),
)?;
let patch_embedder = PatchEmbedder::new(
@@ -135,6 +136,7 @@ impl MMDiTCore {
num_heads: usize,
patch_size: usize,
out_channels: usize,
+ use_flash_attn: bool,
vb: nn::VarBuilder,
) -> Result<Self> {
let mut joint_blocks = Vec::with_capacity(depth - 1);
@@ -142,6 +144,7 @@ impl MMDiTCore {
joint_blocks.push(JointBlock::new(
hidden_size,
num_heads,
+ use_flash_attn,
vb.pp(format!("joint_blocks.{}", i)),
)?);
}
@@ -151,6 +154,7 @@ impl MMDiTCore {
context_qkv_only_joint_block: ContextQkvOnlyJointBlock::new(
hidden_size,
num_heads,
+ use_flash_attn,
vb.pp(format!("joint_blocks.{}", depth - 1)),
)?,
final_layer: FinalLayer::new(
diff --git a/candle-transformers/src/models/mmdit/projections.rs b/candle-transformers/src/models/mmdit/projections.rs
index 1077398f..dc1e8ec9 100644
--- a/candle-transformers/src/models/mmdit/projections.rs
+++ b/candle-transformers/src/models/mmdit/projections.rs
@@ -42,7 +42,6 @@ pub struct QkvOnlyAttnProjections {
impl QkvOnlyAttnProjections {
pub fn new(dim: usize, num_heads: usize, vb: nn::VarBuilder) -> Result<Self> {
- // {'dim': 1536, 'num_heads': 24}
let head_dim = dim / num_heads;
let qkv = nn::linear(dim, dim * 3, vb.pp("qkv"))?;
Ok(Self { qkv, head_dim })
diff --git a/candle-transformers/src/models/stable_diffusion/attention.rs b/candle-transformers/src/models/stable_diffusion/attention.rs
index 5cc59e82..c04e6aa1 100644
--- a/candle-transformers/src/models/stable_diffusion/attention.rs
+++ b/candle-transformers/src/models/stable_diffusion/attention.rs
@@ -467,6 +467,24 @@ pub struct AttentionBlock {
config: AttentionBlockConfig,
}
+// In the .safetensor weights of official Stable Diffusion 3 Medium Huggingface repo
+// https://huggingface.co/stabilityai/stable-diffusion-3-medium
+// Linear layer may use a different dimension for the weight in the linear, which is
+// incompatible with the current implementation of the nn::linear constructor.
+// This is a workaround to handle the different dimensions.
+fn get_qkv_linear(channels: usize, vs: nn::VarBuilder) -> Result<nn::Linear> {
+ match vs.get((channels, channels), "weight") {
+ Ok(_) => nn::linear(channels, channels, vs),
+ Err(_) => {
+ let weight = vs
+ .get((channels, channels, 1, 1), "weight")?
+ .reshape((channels, channels))?;
+ let bias = vs.get((channels,), "bias")?;
+ Ok(nn::Linear::new(weight, Some(bias)))
+ }
+ }
+}
+
impl AttentionBlock {
pub fn new(vs: nn::VarBuilder, channels: usize, config: AttentionBlockConfig) -> Result<Self> {
let num_head_channels = config.num_head_channels.unwrap_or(channels);
@@ -478,10 +496,10 @@ impl AttentionBlock {
} else {
("query", "key", "value", "proj_attn")
};
- let query = nn::linear(channels, channels, vs.pp(q_path))?;
- let key = nn::linear(channels, channels, vs.pp(k_path))?;
- let value = nn::linear(channels, channels, vs.pp(v_path))?;
- let proj_attn = nn::linear(channels, channels, vs.pp(out_path))?;
+ let query = get_qkv_linear(channels, vs.pp(q_path))?;
+ let key = get_qkv_linear(channels, vs.pp(k_path))?;
+ let value = get_qkv_linear(channels, vs.pp(v_path))?;
+ let proj_attn = get_qkv_linear(channels, vs.pp(out_path))?;
let span = tracing::span!(tracing::Level::TRACE, "attn-block");
Ok(Self {
group_norm,
diff --git a/candle-transformers/src/models/stable_diffusion/clip.rs b/candle-transformers/src/models/stable_diffusion/clip.rs
index 5254818e..2f631248 100644
--- a/candle-transformers/src/models/stable_diffusion/clip.rs
+++ b/candle-transformers/src/models/stable_diffusion/clip.rs
@@ -388,6 +388,37 @@ impl ClipTextTransformer {
let xs = self.encoder.forward(&xs, &causal_attention_mask)?;
self.final_layer_norm.forward(&xs)
}
+
+ pub fn forward_until_encoder_layer(
+ &self,
+ xs: &Tensor,
+ mask_after: usize,
+ until_layer: isize,
+ ) -> Result<(Tensor, Tensor)> {
+ let (bsz, seq_len) = xs.dims2()?;
+ let xs = self.embeddings.forward(xs)?;
+ let causal_attention_mask =
+ Self::build_causal_attention_mask(bsz, seq_len, mask_after, xs.device())?;
+
+ let mut xs = xs.clone();
+ let mut intermediate = xs.clone();
+
+ // Modified encoder.forward that returns the intermediate tensor along with final output.
+ let until_layer = if until_layer < 0 {
+ self.encoder.layers.len() as isize + until_layer
+ } else {
+ until_layer
+ } as usize;
+
+ for (layer_id, layer) in self.encoder.layers.iter().enumerate() {
+ xs = layer.forward(&xs, &causal_attention_mask)?;
+ if layer_id == until_layer {
+ intermediate = xs.clone();
+ }
+ }
+
+ Ok((self.final_layer_norm.forward(&xs)?, intermediate))
+ }
}
impl Module for ClipTextTransformer {
diff --git a/candle-transformers/src/models/stable_diffusion/mod.rs b/candle-transformers/src/models/stable_diffusion/mod.rs
index 30f23975..37f4cdbf 100644
--- a/candle-transformers/src/models/stable_diffusion/mod.rs
+++ b/candle-transformers/src/models/stable_diffusion/mod.rs
@@ -65,6 +65,8 @@ impl StableDiffusionConfig {
layers_per_block: 2,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
};
let height = if let Some(height) = height {
assert_eq!(height % 8, 0, "height has to be divisible by 8");
@@ -133,6 +135,8 @@ impl StableDiffusionConfig {
layers_per_block: 2,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
};
let scheduler = Arc::new(ddim::DDIMSchedulerConfig {
prediction_type,
@@ -214,6 +218,8 @@ impl StableDiffusionConfig {
layers_per_block: 2,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
};
let scheduler = Arc::new(ddim::DDIMSchedulerConfig {
prediction_type,
@@ -281,6 +287,8 @@ impl StableDiffusionConfig {
layers_per_block: 2,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
};
let scheduler = Arc::new(
euler_ancestral_discrete::EulerAncestralDiscreteSchedulerConfig {
@@ -378,6 +386,8 @@ impl StableDiffusionConfig {
layers_per_block: 2,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
};
let scheduler = Arc::new(ddim::DDIMSchedulerConfig {
..Default::default()
diff --git a/candle-transformers/src/models/stable_diffusion/vae.rs b/candle-transformers/src/models/stable_diffusion/vae.rs
index 670b3f56..b3aba802 100644
--- a/candle-transformers/src/models/stable_diffusion/vae.rs
+++ b/candle-transformers/src/models/stable_diffusion/vae.rs
@@ -275,6 +275,8 @@ pub struct AutoEncoderKLConfig {
pub layers_per_block: usize,
pub latent_channels: usize,
pub norm_num_groups: usize,
+ pub use_quant_conv: bool,
+ pub use_post_quant_conv: bool,
}
impl Default for AutoEncoderKLConfig {
@@ -284,6 +286,8 @@ impl Default for AutoEncoderKLConfig {
layers_per_block: 1,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
}
}
}
@@ -315,8 +319,8 @@ impl DiagonalGaussianDistribution {
pub struct AutoEncoderKL {
encoder: Encoder,
decoder: Decoder,
- quant_conv: nn::Conv2d,
- post_quant_conv: nn::Conv2d,
+ quant_conv: Option<nn::Conv2d>,
+ post_quant_conv: Option<nn::Conv2d>,
pub config: AutoEncoderKLConfig,
}
@@ -342,20 +346,33 @@ impl AutoEncoderKL {
};
let decoder = Decoder::new(vs.pp("decoder"), latent_channels, out_channels, decoder_cfg)?;
let conv_cfg = Default::default();
- let quant_conv = nn::conv2d(
- 2 * latent_channels,
- 2 * latent_channels,
- 1,
- conv_cfg,
- vs.pp("quant_conv"),
- )?;
- let post_quant_conv = nn::conv2d(
- latent_channels,
- latent_channels,
- 1,
- conv_cfg,
- vs.pp("post_quant_conv"),
- )?;
+
+ let quant_conv = {
+ if config.use_quant_conv {
+ Some(nn::conv2d(
+ 2 * latent_channels,
+ 2 * latent_channels,
+ 1,
+ conv_cfg,
+ vs.pp("quant_conv"),
+ )?)
+ } else {
+ None
+ }
+ };
+ let post_quant_conv = {
+ if config.use_post_quant_conv {
+ Some(nn::conv2d(
+ latent_channels,
+ latent_channels,
+ 1,
+ conv_cfg,
+ vs.pp("post_quant_conv"),
+ )?)
+ } else {
+ None
+ }
+ };
Ok(Self {
encoder,
decoder,
@@ -368,13 +385,19 @@ impl AutoEncoderKL {
/// Returns the distribution in the latent space.
pub fn encode(&self, xs: &Tensor) -> Result<DiagonalGaussianDistribution> {
let xs = self.encoder.forward(xs)?;
- let parameters = self.quant_conv.forward(&xs)?;
+ let parameters = match &self.quant_conv {
+ None => xs,
+ Some(quant_conv) => quant_conv.forward(&xs)?,
+ };
DiagonalGaussianDistribution::new(&parameters)
}
/// Takes as input some sampled values.
pub fn decode(&self, xs: &Tensor) -> Result<Tensor> {
- let xs = self.post_quant_conv.forward(xs)?;
- self.decoder.forward(&xs)
+ let xs = match &self.post_quant_conv {
+ None => xs,
+ Some(post_quant_conv) => &post_quant_conv.forward(xs)?,
+ };
+ self.decoder.forward(xs)
}
}
diff --git a/candle-wasm-examples/yolo/Cargo.toml b/candle-wasm-examples/yolo/Cargo.toml
index e03319a0..c4925210 100644
--- a/candle-wasm-examples/yolo/Cargo.toml
+++ b/candle-wasm-examples/yolo/Cargo.toml
@@ -35,7 +35,7 @@ yew-agent = "0.2.0"
yew = { version = "0.20.0", features = ["csr"] }
[dependencies.web-sys]
-version = "0.3.70"
+version = "=0.3.70"
features = [
'Blob',
'CanvasRenderingContext2d',
diff --git a/candle-wasm-tests/tests/quantized_tests.rs b/candle-wasm-tests/tests/quantized_tests.rs
index 8705df42..ae448078 100644
--- a/candle-wasm-tests/tests/quantized_tests.rs
+++ b/candle-wasm-tests/tests/quantized_tests.rs
@@ -1,3 +1,4 @@
+#![allow(unused)]
use candle::{
quantized::{self, k_quants, GgmlDType, GgmlType},
test_utils::to_vec2_round,