summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-09-22 20:03:16 +0100
committerGitHub <noreply@github.com>2023-09-22 20:03:16 +0100
commitdf6f5240bae8d4279d9b857f06b75ec582aca30e (patch)
treee167fd98ce5277fa37b2e2fd39c74bca5f47c08a
parenta46b1b465793bf675852ee5cf18aeae9c8b11263 (diff)
downloadcandle-df6f5240bae8d4279d9b857f06b75ec582aca30e.tar.gz
candle-df6f5240bae8d4279d9b857f06b75ec582aca30e.tar.bz2
candle-df6f5240bae8d4279d9b857f06b75ec582aca30e.zip
Complete the mixformer implementation. (#930)
* Complete the mixformers implementation. * Tweak the attention. * Add the phi-1.5 example. * Improve the phi example. * Bugfix. * Get the phi example to work.
-rw-r--r--candle-examples/examples/phi/README.md23
-rw-r--r--candle-examples/examples/phi/main.rs163
-rw-r--r--candle-transformers/src/models/mixformer.rs166
3 files changed, 321 insertions, 31 deletions
diff --git a/candle-examples/examples/phi/README.md b/candle-examples/examples/phi/README.md
new file mode 100644
index 00000000..8cf053bd
--- /dev/null
+++ b/candle-examples/examples/phi/README.md
@@ -0,0 +1,23 @@
+# candle-starcoder: code generation model
+
+[phi-1.5](https://huggingface.co/microsoft/phi-1_5).
+
+## Running some example
+
+```bash
+$ cargo run --example phi --release -- --prompt "def print_prime(n): "
+
+def print_prime(n):
+ print("Printing prime numbers")
+ for i in range(2, n+1):
+ if is_prime(i):
+ print(i)
+
+def is_prime(n):
+ if n <= 1:
+ return False
+ for i in range(2, int(math.sqrt(n))+1):
+ if n % i == 0:
+ return False
+ return True
+```
diff --git a/candle-examples/examples/phi/main.rs b/candle-examples/examples/phi/main.rs
new file mode 100644
index 00000000..4b290cd8
--- /dev/null
+++ b/candle-examples/examples/phi/main.rs
@@ -0,0 +1,163 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use anyhow::{Error as E, Result};
+use clap::Parser;
+
+use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as Model};
+
+use candle::{DType, Device, Tensor};
+use candle_nn::VarBuilder;
+use candle_transformers::generation::LogitsProcessor;
+use hf_hub::{api::sync::Api, Repo, RepoType};
+use tokenizers::Tokenizer;
+
+struct TextGeneration {
+ model: Model,
+ device: Device,
+ tokenizer: Tokenizer,
+ logits_processor: LogitsProcessor,
+}
+
+impl TextGeneration {
+ fn new(
+ model: Model,
+ tokenizer: Tokenizer,
+ seed: u64,
+ temp: Option<f64>,
+ top_p: Option<f64>,
+ device: &Device,
+ ) -> Self {
+ let logits_processor = LogitsProcessor::new(seed, temp, top_p);
+ Self {
+ model,
+ tokenizer,
+ logits_processor,
+ device: device.clone(),
+ }
+ }
+
+ fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
+ use std::io::Write;
+ println!("starting the inference loop");
+ print!("{prompt}");
+ std::io::stdout().flush()?;
+ let mut tokens = self
+ .tokenizer
+ .encode(prompt, true)
+ .map_err(E::msg)?
+ .get_ids()
+ .to_vec();
+
+ let mut new_tokens = vec![];
+ let start_gen = std::time::Instant::now();
+ for index in 0..sample_len {
+ let context_size = if index > 0 { 1 } else { tokens.len() };
+ let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
+ let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
+ let logits = self.model.forward(&input)?;
+ let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
+
+ let next_token = self.logits_processor.sample(&logits)?;
+ tokens.push(next_token);
+ new_tokens.push(next_token);
+ let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
+ print!("{token}");
+ std::io::stdout().flush()?;
+ }
+ let dt = start_gen.elapsed();
+ println!(
+ "{sample_len} tokens generated ({:.3} token/s)",
+ sample_len as f64 / dt.as_secs_f64(),
+ );
+ Ok(())
+ }
+}
+
+#[derive(Parser, Debug)]
+#[command(author, version, about, long_about = None)]
+struct Args {
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ #[arg(long)]
+ prompt: String,
+
+ /// The temperature used to generate samples.
+ #[arg(long)]
+ temperature: Option<f64>,
+
+ /// Nucleus sampling probability cutoff.
+ #[arg(long)]
+ top_p: Option<f64>,
+
+ /// The seed to use when generating random samples.
+ #[arg(long, default_value_t = 299792458)]
+ seed: u64,
+
+ /// The length of the sample to generate (in tokens).
+ #[arg(long, default_value_t = 100)]
+ sample_len: usize,
+
+ #[arg(long, default_value = "microsoft/phi-1_5")]
+ model_id: String,
+
+ #[arg(long, default_value = "refs/pr/18")]
+ revision: String,
+
+ #[arg(long)]
+ weight_file: Option<String>,
+}
+
+fn main() -> Result<()> {
+ let args = Args::parse();
+
+ let start = std::time::Instant::now();
+ let api = Api::new()?;
+ let repo = api.repo(Repo::with_revision(
+ args.model_id,
+ RepoType::Model,
+ args.revision,
+ ));
+ let tokenizer_filename = repo.get("tokenizer.json")?;
+ let filenames = match args.weight_file {
+ Some(weight_file) => vec![std::path::PathBuf::from(weight_file)],
+ None => ["model.safetensors"]
+ .iter()
+ .map(|f| repo.get(f))
+ .collect::<std::result::Result<Vec<_>, _>>()?,
+ };
+ println!("retrieved the files in {:?}", start.elapsed());
+ let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
+
+ let weights = filenames
+ .iter()
+ .map(|f| Ok(unsafe { candle::safetensors::MmapedFile::new(f)? }))
+ .collect::<Result<Vec<_>>>()?;
+ let weights = weights
+ .iter()
+ .map(|f| Ok(f.deserialize()?))
+ .collect::<Result<Vec<_>>>()?;
+
+ let start = std::time::Instant::now();
+ let device = candle_examples::device(args.cpu)?;
+ let vb = VarBuilder::from_safetensors(weights, DType::F32, &device);
+ let config = Config::v1_5();
+ let model = Model::new(&config, vb)?;
+ println!("loaded the model in {:?}", start.elapsed());
+
+ let mut pipeline = TextGeneration::new(
+ model,
+ tokenizer,
+ args.seed,
+ args.temperature,
+ args.top_p,
+ &device,
+ );
+ pipeline.run(&args.prompt, args.sample_len)?;
+ Ok(())
+}
diff --git a/candle-transformers/src/models/mixformer.rs b/candle-transformers/src/models/mixformer.rs
index 2674d34f..028c3567 100644
--- a/candle-transformers/src/models/mixformer.rs
+++ b/candle-transformers/src/models/mixformer.rs
@@ -1,10 +1,11 @@
-#![allow(unused)]
/// MixFormer model.
/// https://huggingface.co/microsoft/phi-1_5
/// https://arxiv.org/abs/2309.05463
-use candle::{DType, Device, Module, Result, Tensor, D};
+use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{Activation, VarBuilder};
+const MAX_SEQ_LEN: usize = 4096;
+
// https://huggingface.co/microsoft/phi-1_5/blob/main/configuration_mixformer_sequential.py
#[derive(Debug, Clone, PartialEq)]
pub struct Config {
@@ -21,8 +22,8 @@ pub struct Config {
pad_vocab_size_multiple: usize,
}
-impl Default for Config {
- fn default() -> Self {
+impl Config {
+ pub fn v1() -> Self {
Self {
vocab_size: 50304,
n_positions: 2048,
@@ -37,6 +38,22 @@ impl Default for Config {
pad_vocab_size_multiple: 64,
}
}
+
+ pub fn v1_5() -> Self {
+ Self {
+ vocab_size: 51200,
+ n_positions: 2048,
+ n_embd: 2048,
+ n_layer: 24,
+ n_inner: None,
+ n_head: 32,
+ rotary_dim: usize::min(32, 2048 / 32),
+ activation_function: Activation::Gelu,
+ layer_norm_epsilon: 1e-5,
+ tie_word_embeddings: false,
+ pad_vocab_size_multiple: 64,
+ }
+ }
}
#[derive(Debug)]
@@ -58,7 +75,70 @@ impl Module for Embedding {
}
#[derive(Debug)]
-struct RotaryEmbedding {}
+struct RotaryEmbedding {
+ sin: Tensor,
+ cos: Tensor,
+}
+
+impl RotaryEmbedding {
+ fn new(dim: usize, max_seq_len: usize, dev: &Device) -> Result<Self> {
+ let inv_freq: Vec<_> = (0..dim)
+ .step_by(2)
+ .map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
+ .collect();
+ let inv_freq_len = inv_freq.len();
+ let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
+ let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
+ .to_dtype(DType::F32)?
+ .reshape((max_seq_len, 1))?;
+ let freqs = t.matmul(&inv_freq)?;
+ Ok(Self {
+ sin: freqs.sin()?,
+ cos: freqs.cos()?,
+ })
+ }
+
+ fn apply_rotary_emb_qkv(
+ &self,
+ qkv: &Tensor,
+ seqlen_offset: usize,
+ ) -> Result<(Tensor, Tensor, Tensor)> {
+ let (_b_size, seqlen, three, _, _headdim) = qkv.dims5()?;
+ if three != 3 {
+ candle::bail!("unexpected shape for qkv {:?}", qkv.shape())
+ }
+ let (_rotary_seqlen, rotary_dim) = self.cos.dims2()?;
+ let rotary_dim = rotary_dim * 2;
+ let q_rot = qkv.i((.., .., 0, .., ..rotary_dim))?;
+ let q_pass = qkv.i((.., .., 0, .., rotary_dim..))?;
+ let k_rot = qkv.i((.., .., 1, .., ..rotary_dim))?;
+ let k_pass = qkv.i((.., .., 1, .., rotary_dim..))?;
+ let q12 = q_rot.chunk(2, D::Minus1)?;
+ let k12 = k_rot.chunk(2, D::Minus1)?;
+ let (q1, q2) = (&q12[0], &q12[1]);
+ let (k1, k2) = (&k12[0], &k12[1]);
+ let c = self.cos.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
+ let s = self.sin.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
+ let q_rot = Tensor::cat(
+ &[
+ (q1.broadcast_mul(&c)? - q2.broadcast_mul(&s)?)?,
+ (q1.broadcast_mul(&s)? + q2.broadcast_mul(&c)?)?,
+ ],
+ D::Minus1,
+ )?;
+ let k_rot = Tensor::cat(
+ &[
+ (k1.broadcast_mul(&c)? - k2.broadcast_mul(&s)?)?,
+ (k1.broadcast_mul(&s)? + k2.broadcast_mul(&c)?)?,
+ ],
+ D::Minus1,
+ )?;
+ let q = Tensor::cat(&[&q_rot, &q_pass], D::Minus1)?;
+ let k = Tensor::cat(&[&k_rot, &k_pass], D::Minus1)?;
+ let v = qkv.i((.., .., 2))?;
+ Ok((q, k, v))
+ }
+}
#[derive(Debug)]
#[allow(clippy::upper_case_acronyms)]
@@ -88,18 +168,6 @@ impl Module for MLP {
}
#[derive(Debug)]
-struct SelfAttention {
- causal: bool,
- softmax_scale: f64,
-}
-
-#[derive(Debug)]
-struct CrossAttention {
- causal: bool,
- softmax_scale: f64,
-}
-
-#[derive(Debug)]
struct CausalLMHead {
ln: candle_nn::LayerNorm,
linear: candle_nn::Linear,
@@ -126,7 +194,10 @@ impl Module for CausalLMHead {
struct MHA {
wqkv: candle_nn::Linear,
out_proj: candle_nn::Linear,
+ rotary_emb: RotaryEmbedding,
+ kv_cache: Option<(Tensor, Tensor)>,
head_dim: usize,
+ softmax_scale: f64,
}
impl MHA {
@@ -135,23 +206,59 @@ impl MHA {
let op_size = cfg.n_embd;
let wqkv = candle_nn::linear(cfg.n_embd, 3 * op_size, vb.pp("Wqkv"))?;
let out_proj = candle_nn::linear(op_size, cfg.n_embd, vb.pp("out_proj"))?;
+ let rotary_emb = RotaryEmbedding::new(cfg.rotary_dim, MAX_SEQ_LEN, vb.device())?;
+ let softmax_scale = 1f64 / (head_dim as f64).sqrt();
Ok(Self {
wqkv,
out_proj,
head_dim,
+ kv_cache: None,
+ rotary_emb,
+ softmax_scale,
})
}
-}
-impl Module for MHA {
- fn forward(&self, xs: &Tensor) -> Result<Tensor> {
- let (b_size, seq_len, n_embd) = xs.dims3()?;
+ fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
+ let (b_size, seq_len, _n_embd) = xs.dims3()?;
let qkv = self
.wqkv
.forward(xs)?
.reshape((b_size, seq_len, 3, (), self.head_dim))?;
- let context: Tensor = qkv; // TODO
- context.flatten_from(D::Minus2)?.apply(&self.out_proj)
+ let seqlen_offset = match &self.kv_cache {
+ None => 0,
+ Some((prev_k, _)) => prev_k.dim(1)?,
+ };
+ // In the python implementation, a single tensor is returned with the third axis of size 3.
+ let (q, k, v) = self.rotary_emb.apply_rotary_emb_qkv(&qkv, seqlen_offset)?;
+ let (k, v) = match &self.kv_cache {
+ None => (k, v),
+ Some((prev_k, prev_v)) => {
+ let k = Tensor::cat(&[prev_k, &k], 1)?;
+ let v = Tensor::cat(&[prev_v, &v], 1)?;
+ (k, v)
+ }
+ };
+ self.kv_cache = Some((k.clone(), v.clone()));
+ // scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
+ let q = q.transpose(1, 2)?.flatten_to(1)?; // b*h, t, d
+ let k = k.transpose(1, 2)?.flatten_to(1)?; // b*h, s, d
+ let v = v.transpose(1, 2)?.flatten_to(1)?; // b*h, s, d
+ let attn_weights = (q.matmul(&k.t()?)? * self.softmax_scale)?; // b*h, t, s
+
+ // TODO: Add the causal mask.
+ // causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0, device=scores.device), 1)
+ // scores = scores + causal_mask.to(dtype=scores.dtype)
+ let attn_weights = candle_nn::ops::softmax(&attn_weights, D::Minus1)?;
+
+ // output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
+ // attn_weights: b*h,t,s, v: b*h,s,d
+ let attn_output = attn_weights.matmul(&v)?;
+ // b*h,t,d
+ let attn_output = attn_output
+ .reshape((b_size, (), seq_len, self.head_dim))?
+ .transpose(1, 2)?
+ .flatten_from(D::Minus2)?;
+ attn_output.apply(&self.out_proj)
}
}
@@ -169,10 +276,8 @@ impl ParallelBlock {
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
Ok(Self { ln, mixer, mlp })
}
-}
-impl Module for ParallelBlock {
- fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
let residual = xs;
let xs = xs.apply(&self.ln)?;
let attn_outputs = self.mixer.forward(&xs)?;
@@ -204,14 +309,13 @@ impl MixFormerSequentialForCausalLM {
head,
})
}
-}
-impl Module for MixFormerSequentialForCausalLM {
- fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
+ let (_b_size, seq_len) = xs.dims2()?;
let mut xs = xs.apply(&self.embedding)?;
- for block in self.blocks.iter() {
+ for block in self.blocks.iter_mut() {
xs = block.forward(&xs)?
}
- xs.apply(&self.head)
+ xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1)
}
}