diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2024-02-14 10:58:32 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-02-14 10:58:32 +0100 |
commit | 2d5f2a728d9ade10ce4b7b618ee4dba8075064dd (patch) | |
tree | 304d99d8330c116bea92c2997474311c199e579a /README.md | |
parent | 68f76558956f7f56cb5014bb5f7c7c5534436b72 (diff) | |
download | candle-2d5f2a728d9ade10ce4b7b618ee4dba8075064dd.tar.gz candle-2d5f2a728d9ade10ce4b7b618ee4dba8075064dd.tar.bz2 candle-2d5f2a728d9ade10ce4b7b618ee4dba8075064dd.zip |
Add the RWKV model (v5). (#1707)
* Start adding the RWKV model.
* More of the forward step.
* Handle rescaling.
* FeedForward.
* More work on RWKV.
* Better state tracking.
* Finish a first pass on forward.
* Fix the shape mismatches.
* Do not rescale in f32.
* Rename to rwkv-v5.
* Add the new models to the readme.
Diffstat (limited to 'README.md')
-rw-r--r-- | README.md | 8 |
1 files changed, 7 insertions, 1 deletions
@@ -75,6 +75,9 @@ We also provide a some command line based examples using state of the art models experts 8x7b general LLM with better performance than a Llama 2 70B model with much faster inference. - [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code generation. +- [Qwen1.5](./candle-examples/examples/qwen/): Bilingual (English/Chinese) LLMs. +- [RWKV v5](./candle-examples/examples/rwkv/): An RNN with transformer level LLM + performance. - [Replit-code-v1.5](./candle-examples/examples/replit-code/): a 3.3b LLM specialized for code completion. - [Yi-6B / Yi-34B](./candle-examples/examples/yi/): two bilingual (English/Chinese) general LLMs with 6b and 34b parameters. @@ -193,6 +196,8 @@ If you have an addition to this list, please submit a pull request. - Replit-code-v1.5-3B. - Bert. - Yi-6B and Yi-34B. + - Qwen1.5. + - RWKV. - Quantized LLMs. - Llama 7b, 13b, 70b, as well as the chat and code variants. - Mistral 7b, and 7b instruct. @@ -210,7 +215,8 @@ If you have an addition to this list, please submit a pull request. - BLIP. - TrOCR. - Computer Vision Models. - - DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT. + - DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT, + ConvNeXTv2. - yolo-v3, yolo-v8. - Segment-Anything Model (SAM). - File formats: load models from safetensors, npz, ggml, or PyTorch files. |