summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-09-16 08:22:24 +0200
committerGitHub <noreply@github.com>2023-09-16 07:22:24 +0100
commit7cafca835a4bb9a21f3c8111e2f61b7a6b1270fd (patch)
tree866d39e848afa38104c0a79cc100d6d722bf4312 /README.md
parent04ca2b9ebd75b065641512d4254850e065699030 (diff)
downloadcandle-7cafca835a4bb9a21f3c8111e2f61b7a6b1270fd.tar.gz
candle-7cafca835a4bb9a21f3c8111e2f61b7a6b1270fd.tar.bz2
candle-7cafca835a4bb9a21f3c8111e2f61b7a6b1270fd.zip
readme tweaks. (#867)
Diffstat (limited to 'README.md')
-rw-r--r--README.md23
1 files changed, 17 insertions, 6 deletions
diff --git a/README.md b/README.md
index 610ef555..d897de89 100644
--- a/README.md
+++ b/README.md
@@ -8,7 +8,9 @@ Candle is a minimalist ML framework for Rust with a focus on performance (includ
and ease of use. Try our online demos:
[whisper](https://huggingface.co/spaces/lmz/candle-whisper),
[LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2),
-[yolo](https://huggingface.co/spaces/lmz/candle-yolo).
+[yolo](https://huggingface.co/spaces/lmz/candle-yolo),
+[Segment
+Anything](https://huggingface.co/spaces/radames/candle-segment-anything-wasm).
## Get started
@@ -114,8 +116,7 @@ And then head over to
<!--- ANCHOR: useful_libraries --->
## Useful Libraries
-- `candle-lora`
- - [`candle-lora`](https://github.com/EricLBuehler/candle-lora) provides a LoRA implementation that conforms to the official `peft` implementation.
+- [`candle-lora`](https://github.com/EricLBuehler/candle-lora) provides a LoRA implementation that conforms to the official `peft` implementation.
If you have an addition to this list, please submit a pull request.
@@ -133,10 +134,20 @@ If you have an addition to this list, please submit a pull request.
- CUDA backend for efficiently running on GPUs, multiple GPU distribution via NCCL.
- WASM support, run your models in a browser.
- Included models.
- - LLMs: LLaMA v1 and v2, Falcon, StarCoder.
+ - Language Models.
+ - LLaMA v1 and v2.
+ - Falcon.
+ - StarCoder.
+ - T5.
+ - Bert.
- Whisper (multi-lingual support).
- - Stable Diffusion.
- - Computer Vision: DINOv2, EfficientNet, yolo-v3, yolo-v8.
+ - Stable Diffusion v1.5, v2.1, XL v1.0.
+ - Computer Vision Models.
+ - DINOv2.
+ - EfficientNet.
+ - yolo-v3.
+ - yolo-v8.
+ - Segment-Anything Model (SAM).
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
- Serverless (on CPU), small and fast deployments.
- Quantization support using the llama.cpp quantized types.