summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2024-02-03 15:19:57 +0100
committerGitHub <noreply@github.com>2024-02-03 15:19:57 +0100
commita510ddec4e2e2b5d8c6c200fbe6341b0d210b6b0 (patch)
tree8c9767d050a7e93a211c8673305c331a4366c827 /README.md
parentd32abbce539e291eb06bcf92f68800f08de28169 (diff)
downloadcandle-a510ddec4e2e2b5d8c6c200fbe6341b0d210b6b0.tar.gz
candle-a510ddec4e2e2b5d8c6c200fbe6341b0d210b6b0.tar.bz2
candle-a510ddec4e2e2b5d8c6c200fbe6341b0d210b6b0.zip
Mention the new models in the readme. (#1651)
Diffstat (limited to 'README.md')
-rw-r--r--README.md7
1 files changed, 4 insertions, 3 deletions
diff --git a/README.md b/README.md
index 14172742..63f05ba3 100644
--- a/README.md
+++ b/README.md
@@ -65,7 +65,8 @@ We also provide a some command line based examples using state of the art models
- [Falcon](./candle-examples/examples/falcon/): general LLM.
- [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b.
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
- pre-trained on 1T tokens of English and code datasets.
+ pre-trained on 1T tokens of English and code datasets. Also supports
+ StableLM-2, a 1.6b LLM trained on 2T tokens, as well as the code variants.
- [Minimal Mamba](./candle-examples/examples/mamba-minimal/): a minimal
implementation of the Mamba state space model.
- [Mistral7b-v0.1](./candle-examples/examples/mistral/): a 7b general LLM with
@@ -187,7 +188,7 @@ If you have an addition to this list, please submit a pull request.
- Minimal Mamba
- Mistral 7b v0.1.
- Mixtral 8x7b v0.1.
- - StableLM-3B-4E1T.
+ - StableLM-3B-4E1T, StableLM-2-1.6B, Stable-Code-3B.
- Replit-code-v1.5-3B.
- Bert.
- Yi-6B and Yi-34B.
@@ -207,7 +208,7 @@ If you have an addition to this list, please submit a pull request.
- Image to text.
- BLIP.
- Computer Vision Models.
- - DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG.
+ - DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT.
- yolo-v3, yolo-v8.
- Segment-Anything Model (SAM).
- File formats: load models from safetensors, npz, ggml, or PyTorch files.