summaryrefslogtreecommitdiff
path: root/candle-book/src
diff options
context:
space:
mode:
authorNicolas Patry <patry.nicolas@protonmail.com>2023-07-27 16:35:40 +0200
committerNicolas Patry <patry.nicolas@protonmail.com>2023-08-01 14:26:02 +0200
commitad9d8fe4003eb08c1df20a86697f8d026ee3a800 (patch)
tree8a9955f8419f9c4d44af8cdae2126da58796eafa /candle-book/src
parent5bc5716b85b1ae22794698d8381df50d6afcf0bc (diff)
downloadcandle-ad9d8fe4003eb08c1df20a86697f8d026ee3a800.tar.gz
candle-ad9d8fe4003eb08c1df20a86697f8d026ee3a800.tar.bz2
candle-ad9d8fe4003eb08c1df20a86697f8d026ee3a800.zip
Complexifying our hello world
Diffstat (limited to 'candle-book/src')
-rw-r--r--candle-book/src/guide/hello_world.md141
1 files changed, 140 insertions, 1 deletions
diff --git a/candle-book/src/guide/hello_world.md b/candle-book/src/guide/hello_world.md
index 393576ad..bdf7b712 100644
--- a/candle-book/src/guide/hello_world.md
+++ b/candle-book/src/guide/hello_world.md
@@ -43,8 +43,147 @@ Everything should now run with:
cargo run --release
```
-Now that we have the running dummy code we can get to more advanced topics:
+## Using a `Linear` layer.
+
+Now that we have this, we might want to complexity a little, for instance by adding `bias` and creating
+the classical `Linear` layer. We can do as such
+
+```rust
+# extern crate candle;
+# use candle::{DType, Device, Result, Tensor};
+struct Linear{
+ weight: Tensor,
+ bias: Tensor,
+}
+impl Linear{
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x = x.matmul(&self.weight)?;
+ x.broadcast_add(&self.bias)
+ }
+}
+
+struct Model {
+ first: Linear,
+ second: Linear,
+}
+
+impl Model {
+ fn forward(&self, image: &Tensor) -> Result<Tensor> {
+ let x = self.first.forward(image)?;
+ let x = x.relu()?;
+ self.second.forward(&x)
+ }
+}
+```
+
+This will change the loading code into a new function
+
+```rust
+# extern crate candle;
+# use candle::{DType, Device, Result, Tensor};
+# struct Linear{
+# weight: Tensor,
+# bias: Tensor,
+# }
+# impl Linear{
+# fn forward(&self, x: &Tensor) -> Result<Tensor> {
+# let x = x.matmul(&self.weight)?;
+# x.broadcast_add(&self.bias)
+# }
+# }
+#
+# struct Model {
+# first: Linear,
+# second: Linear,
+# }
+#
+# impl Model {
+# fn forward(&self, image: &Tensor) -> Result<Tensor> {
+# let x = self.first.forward(image)?;
+# let x = x.relu()?;
+# self.second.forward(&x)
+# }
+# }
+fn main() -> Result<()> {
+ // Use Device::new_cuda(0)?; to use the GPU.
+ let device = Device::Cpu;
+
+ let weight = Tensor::zeros((784, 100), DType::F32, &device)?;
+ let bias = Tensor::zeros((100, ), DType::F32, &device)?;
+ let first = Linear{weight, bias};
+ let weight = Tensor::zeros((100, 10), DType::F32, &device)?;
+ let bias = Tensor::zeros((10, ), DType::F32, &device)?;
+ let second = Linear{weight, bias};
+ let model = Model { first, second };
+
+ let dummy_image = Tensor::zeros((1, 784), DType::F32, &device)?;
+
+ let digit = model.forward(&dummy_image)?;
+ println!("Digit {digit:?} digit");
+ Ok(())
+}
+```
+
+Now it works, great and is a great way to create your own layers.
+But most of the classical layers are already implemented in [candle-nn](https://github.com/LaurentMazare/candle/tree/main/candle-nn).
+
+## Using a `candle_nn`.
+For instance [Linear](https://github.com/LaurentMazare/candle/blob/main/candle-nn/src/linear.rs) is already there.
+This Linear is coded with PyTorch layout in mind, to reuse better existing models out there, so it uses the transpose of the weights and not the weights directly.
+
+So instead we can simplify our example:
+
+```bash
+cargo add --git https://github.com/LaurentMazare/candle.git candle-nn
+```
+
+And rewrite our examples using it
+
+```rust
+# extern crate candle;
+# extern crate candle_nn;
+use candle::{DType, Device, Result, Tensor};
+use candle_nn::Linear;
+
+struct Model {
+ first: Linear,
+ second: Linear,
+}
+
+impl Model {
+ fn forward(&self, image: &Tensor) -> Result<Tensor> {
+ let x = self.first.forward(image)?;
+ let x = x.relu()?;
+ self.second.forward(&x)
+ }
+}
+
+fn main() -> Result<()> {
+ // Use Device::new_cuda(0)?; to use the GPU.
+ let device = Device::Cpu;
+
+ // This has changed (784, 100) -> (100, 784) !
+ let weight = Tensor::zeros((100, 784), DType::F32, &device)?;
+ let bias = Tensor::zeros((100, ), DType::F32, &device)?;
+ let first = Linear::new(weight, Some(bias));
+ let weight = Tensor::zeros((10, 100), DType::F32, &device)?;
+ let bias = Tensor::zeros((10, ), DType::F32, &device)?;
+ let second = Linear::new(weight, Some(bias));
+ let model = Model { first, second };
+
+ let dummy_image = Tensor::zeros((1, 784), DType::F32, &device)?;
+
+ let digit = model.forward(&dummy_image)?;
+ println!("Digit {digit:?} digit");
+ Ok(())
+}
+```
+
+Feel free to modify this example to use `Conv2d` to create a classical convnet instead.
+
+
+Now that we have the running dummy code we can get to more advanced topics:
- [For PyTorch users](./guide/cheatsheet.md)
- [Running existing models](./inference/README.md)