summaryrefslogtreecommitdiff
path: root/candle-core/benches
diff options
context:
space:
mode:
authorEric Buehler <65165915+EricLBuehler@users.noreply.github.com>2024-07-26 15:32:26 -0400
committerGitHub <noreply@github.com>2024-07-26 21:32:26 +0200
commit0f5cbb08b36a2d962470ec590a2d2bd9770bd12d (patch)
treea5d6911051646e96fc833664b44c530c76fe4416 /candle-core/benches
parentddafc61055601002622778b7762c15bd60057c1f (diff)
downloadcandle-0f5cbb08b36a2d962470ec590a2d2bd9770bd12d.tar.gz
candle-0f5cbb08b36a2d962470ec590a2d2bd9770bd12d.tar.bz2
candle-0f5cbb08b36a2d962470ec590a2d2bd9770bd12d.zip
Add support for Llama 3.1 (#2359)
* Add Llama 3.1 rope * Clippy * Format * Clippy * Add support for multiple eos tokens: * Untagged either * Remove either dep and fix settings.json * Make the max positional embeddings configurable
Diffstat (limited to 'candle-core/benches')
-rw-r--r--candle-core/benches/benchmarks/affine.rs2
-rw-r--r--candle-core/benches/benchmarks/qmatmul.rs4
-rw-r--r--candle-core/benches/benchmarks/unary.rs2
-rw-r--r--candle-core/benches/benchmarks/where_cond.rs6
4 files changed, 7 insertions, 7 deletions
diff --git a/candle-core/benches/benchmarks/affine.rs b/candle-core/benches/benchmarks/affine.rs
index eded9f57..c1004c6c 100644
--- a/candle-core/benches/benchmarks/affine.rs
+++ b/candle-core/benches/benchmarks/affine.rs
@@ -12,7 +12,7 @@ fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name:
let m = 1024;
let k = 1024;
- let tensor = Tensor::zeros((b, m, k), dtype, &device).unwrap();
+ let tensor = Tensor::zeros((b, m, k), dtype, device).unwrap();
let flops = b * m * k * dtype.size_in_bytes();
diff --git a/candle-core/benches/benchmarks/qmatmul.rs b/candle-core/benches/benchmarks/qmatmul.rs
index ccb136ac..4d34588b 100644
--- a/candle-core/benches/benchmarks/qmatmul.rs
+++ b/candle-core/benches/benchmarks/qmatmul.rs
@@ -7,7 +7,7 @@ use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(matmul: &QMatMul, x: &Tensor) {
- matmul.forward(&x).unwrap();
+ matmul.forward(x).unwrap();
}
fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
@@ -50,7 +50,7 @@ fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
- for dtype in vec![
+ for dtype in [
GgmlDType::F32,
GgmlDType::F16,
GgmlDType::Q4_0,
diff --git a/candle-core/benches/benchmarks/unary.rs b/candle-core/benches/benchmarks/unary.rs
index a8e0d025..9efd7509 100644
--- a/candle-core/benches/benchmarks/unary.rs
+++ b/candle-core/benches/benchmarks/unary.rs
@@ -12,7 +12,7 @@ fn run_unary_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &
let m = 1024;
let k = 1024;
- let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, &device)
+ let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, device)
.unwrap()
.to_dtype(dtype)
.unwrap()
diff --git a/candle-core/benches/benchmarks/where_cond.rs b/candle-core/benches/benchmarks/where_cond.rs
index c517dcf5..0e91f656 100644
--- a/candle-core/benches/benchmarks/where_cond.rs
+++ b/candle-core/benches/benchmarks/where_cond.rs
@@ -25,9 +25,9 @@ const SIZE: usize = B * M * K;
const DATA: [u8; SIZE] = create_cond_arr::<SIZE>();
fn run_where_cond_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
- let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), &device).unwrap();
- let on_true = Tensor::ones((B, M, K), dtype, &device).unwrap();
- let on_false = Tensor::zeros((B, M, K), dtype, &device).unwrap();
+ let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), device).unwrap();
+ let on_true = Tensor::ones((B, M, K), dtype, device).unwrap();
+ let on_false = Tensor::zeros((B, M, K), dtype, device).unwrap();
let elements = B * M * K;
// E.g. 2 f32 tensors + 1 u8 tensor