summaryrefslogtreecommitdiff
path: root/candle-core/examples/cuda_basics.rs
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-07-08 08:39:27 +0100
committerGitHub <noreply@github.com>2023-07-08 08:39:27 +0100
commit33479c5f1b98a6e9f537ea139449bb8dc26fed3e (patch)
treed4b78d20f7ce5457a8596d46a92f39ad184b672a /candle-core/examples/cuda_basics.rs
parentf35cfc5e976d454541dcc66934aa97969a08595f (diff)
downloadcandle-33479c5f1b98a6e9f537ea139449bb8dc26fed3e.tar.gz
candle-33479c5f1b98a6e9f537ea139449bb8dc26fed3e.tar.bz2
candle-33479c5f1b98a6e9f537ea139449bb8dc26fed3e.zip
Add some very simple sum benchmark. (#108)
* Add some very simple sum benchmark. * Rename the file.
Diffstat (limited to 'candle-core/examples/cuda_basics.rs')
-rw-r--r--candle-core/examples/cuda_basics.rs34
1 files changed, 0 insertions, 34 deletions
diff --git a/candle-core/examples/cuda_basics.rs b/candle-core/examples/cuda_basics.rs
deleted file mode 100644
index 6050d793..00000000
--- a/candle-core/examples/cuda_basics.rs
+++ /dev/null
@@ -1,34 +0,0 @@
-#[cfg(feature = "mkl")]
-extern crate intel_mkl_src;
-
-use anyhow::Result;
-use candle::{Device, Tensor};
-
-fn main() -> Result<()> {
- let device = Device::new_cuda(0)?;
- let ids = Tensor::new(&[0u32, 2u32, 1u32], &device)?;
- let t = Tensor::new(&[[0f32, 1f32], [2f32, 3f32], [4f32, 5f32]], &device)?;
- let hs = Tensor::embedding(&ids, &t)?;
- println!("> {:?}", hs.to_vec2::<f32>());
-
- let x = Tensor::new(&[3f32, 1., 4., 1., 5.], &device)?;
- println!("{:?}", x.to_vec1::<f32>()?);
- let y = Tensor::new(&[2f32, 7., 1., 8., 2.], &device)?;
- let z = (y + x * 3.)?;
- println!("{:?}", z.to_vec1::<f32>()?);
- println!("{:?}", z.sqrt()?.to_vec1::<f32>()?);
- let x = Tensor::new(&[[11f32, 22.], [33., 44.], [55., 66.], [77., 78.]], &device)?;
- let y = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &device)?;
- println!("{:?}", y.to_vec2::<f32>()?);
- let z = x.matmul(&y)?;
- println!("{:?}", z.to_vec2::<f32>()?);
- let x = Tensor::new(
- &[[11f32, 22.], [33., 44.], [55., 66.], [77., 78.]],
- &Device::Cpu,
- )?;
- let y = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
- println!("{:?}", y.to_vec2::<f32>()?);
- let z = x.matmul(&y)?;
- println!("{:?}", z.to_vec2::<f32>()?);
- Ok(())
-}