summaryrefslogtreecommitdiff
path: root/candle-core/src/cpu_backend/mod.rs
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2024-03-29 23:02:11 +0100
committerGitHub <noreply@github.com>2024-03-29 23:02:11 +0100
commit665da304878326e267b178fa6e6d85424249126b (patch)
treeb1c4e16174c84ffadc56d2ac5ec26d2a5882b86a /candle-core/src/cpu_backend/mod.rs
parent356a170ae92ea85411e605de1be2685b4c923358 (diff)
downloadcandle-665da304878326e267b178fa6e6d85424249126b.tar.gz
candle-665da304878326e267b178fa6e6d85424249126b.tar.bz2
candle-665da304878326e267b178fa6e6d85424249126b.zip
Backend refactoring. (#1966)
* Backend refactoring. * Metal tweaks. * Move the cudnn module.
Diffstat (limited to 'candle-core/src/cpu_backend/mod.rs')
-rw-r--r--candle-core/src/cpu_backend/mod.rs2652
1 files changed, 2652 insertions, 0 deletions
diff --git a/candle-core/src/cpu_backend/mod.rs b/candle-core/src/cpu_backend/mod.rs
new file mode 100644
index 00000000..d686440a
--- /dev/null
+++ b/candle-core/src/cpu_backend/mod.rs
@@ -0,0 +1,2652 @@
+use crate::backend::{BackendDevice, BackendStorage};
+use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
+use crate::{DType, Error, IntDType, Layout, Result, Shape, WithDType};
+use half::{bf16, f16};
+use rayon::prelude::*;
+
+mod utils;
+pub use utils::{
+ binary_map, binary_map_vec, unary_map, unary_map_vec, Map1, Map1Any, Map2, Map2U8,
+};
+
+const USE_IM2COL_CONV1D: bool = true;
+const USE_IM2COL_CONV1D_TR: bool = true;
+const USE_IM2COL_CONV2D: bool = true;
+
+// TODO: Maybe we should not implement [Clone] here and instead have an explicit allocator +
+// intercept the oom errors to avoid panicking and provide a proper error.
+#[derive(Debug, Clone)]
+pub enum CpuStorage {
+ U8(Vec<u8>),
+ U32(Vec<u32>),
+ I64(Vec<i64>),
+ BF16(Vec<bf16>),
+ F16(Vec<f16>),
+ F32(Vec<f32>),
+ F64(Vec<f64>),
+}
+
+#[derive(Debug, Clone)]
+pub struct CpuDevice;
+
+struct Cmp(CmpOp);
+impl Map2U8 for Cmp {
+ const OP: &'static str = "cmp";
+ #[inline(always)]
+ fn f<T: WithDType>(
+ &self,
+ lhs: &[T],
+ lhs_l: &Layout,
+ rhs: &[T],
+ rhs_l: &Layout,
+ ) -> Result<Vec<u8>> {
+ let dst = match self.0 {
+ CmpOp::Eq => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x == y)),
+ CmpOp::Ne => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x != y)),
+ CmpOp::Lt => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x < y)),
+ CmpOp::Le => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x <= y)),
+ CmpOp::Gt => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x > y)),
+ CmpOp::Ge => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x >= y)),
+ };
+ Ok(dst)
+ }
+}
+
+struct WCond<'a, T: IntDType>(&'a [T], &'a Layout);
+
+impl<'a, I: IntDType> Map2 for WCond<'a, I> {
+ const OP: &'static str = "where";
+ #[inline(always)]
+ fn f<T: WithDType>(&self, t: &[T], t_l: &Layout, f: &[T], f_l: &Layout) -> Result<Vec<T>> {
+ let vs = match (
+ self.1.contiguous_offsets(),
+ t_l.contiguous_offsets(),
+ f_l.contiguous_offsets(),
+ ) {
+ (Some((o1, o2)), Some((o_t1, o_t2)), Some((o_f1, o_f2))) => {
+ let pred = &self.0[o1..o2];
+ let t = &t[o_t1..o_t2];
+ let f = &f[o_f1..o_f2];
+ pred.iter()
+ .zip(t.iter().zip(f.iter()))
+ .map(|(p, (&t, &f))| if p.is_true() { t } else { f })
+ .collect::<Vec<_>>()
+ }
+ _ => self
+ .1
+ .strided_index()
+ .zip(t_l.strided_index().zip(f_l.strided_index()))
+ .map(|(i_p, (i_t, i_f))| {
+ if self.0[i_p].is_true() {
+ t[i_t]
+ } else {
+ f[i_f]
+ }
+ })
+ .collect::<Vec<_>>(),
+ };
+ Ok(vs)
+ }
+}
+
+struct ReduceIndex {
+ reduce_dim_index: usize,
+ use_min: bool,
+ return_index: bool,
+}
+
+impl ReduceIndex {
+ // The value gets replaced if f(s[current_acc], s[i]) returns true.
+ #[inline(always)]
+ fn fold_impl<T, U, F, G>(&self, src: &[T], src_l: &Layout, f: F, g: G) -> Result<Vec<U>>
+ where
+ T: Clone + Copy,
+ U: Clone + Copy,
+ F: Fn(T, T) -> bool,
+ G: Fn(T, usize) -> U,
+ {
+ let reduce_dim_size = src_l.dims()[self.reduce_dim_index];
+ let reduce_dim_stride = src_l.stride()[self.reduce_dim_index];
+ let dst_len = src_l.shape().elem_count() / reduce_dim_size;
+ let mut dst: Vec<U> = Vec::with_capacity(dst_len);
+ let dst_to_set = dst.spare_capacity_mut();
+ let dst_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(dst_to_set) };
+ match src_l.contiguous_offsets() {
+ Some((o1, o2)) => {
+ let src = &src[o1..o2];
+ if reduce_dim_stride == 1 {
+ for (start_src_i, dst_v) in dst_to_set.iter_mut().enumerate() {
+ let start_src_i = start_src_i * reduce_dim_size;
+ let src = &src[start_src_i..start_src_i + reduce_dim_size];
+ let mut acc = 0;
+ let mut val = src[0];
+ for (src_i, &s) in src.iter().enumerate() {
+ if f(val, s) {
+ acc = src_i;
+ val = s
+ }
+ }
+ *dst_v = g(val, acc)
+ }
+ } else {
+ for (start_src_i, dst_v) in dst_to_set.iter_mut().enumerate() {
+ let (p, q) = (
+ start_src_i / reduce_dim_stride,
+ start_src_i % reduce_dim_stride,
+ );
+ // start_src_i = p * reduce_dim_stride + q
+ let start_src_i = p * reduce_dim_stride * reduce_dim_size + q;
+ let src = &src[start_src_i..];
+ let mut acc = 0;
+ let mut val = src[0];
+ for src_i in 0..reduce_dim_size {
+ let s = src[src_i * reduce_dim_stride];
+ if f(val, s) {
+ acc = src_i;
+ val = s
+ }
+ }
+ *dst_v = g(val, acc)
+ }
+ }
+ }
+ None => {
+ let l = src_l.narrow(self.reduce_dim_index, 0, 1)?;
+ for (unstr_index, src_index) in l.strided_index().enumerate() {
+ let src = &src[src_index..];
+ let mut acc = 0;
+ let mut val = src[0];
+ for src_i in 0..reduce_dim_size {
+ let s = src[src_i * reduce_dim_stride];
+ if f(val, s) {
+ acc = src_i;
+ val = s
+ }
+ }
+ dst_to_set[unstr_index] = g(val, acc)
+ }
+ }
+ }
+ unsafe { dst.set_len(dst_len) };
+ Ok(dst)
+ }
+}
+
+impl Map1Any for ReduceIndex {
+ #[inline(always)]
+ fn f<T: WithDType, W: Fn(Vec<T>) -> CpuStorage>(
+ &self,
+ src: &[T],
+ src_l: &Layout,
+ wrap: W,
+ ) -> Result<CpuStorage> {
+ if src_l.shape().elem_count() == 0 {
+ Err(Error::EmptyTensor { op: "reduce" }.bt())?
+ }
+ let dst = match (self.return_index, self.use_min) {
+ (false, true) => wrap(self.fold_impl(src, src_l, |x, y| x > y, |v, _i| v)?),
+ (false, false) => wrap(self.fold_impl(src, src_l, |x, y| x < y, |v, _i| v)?),
+ (true, true) => {
+ CpuStorage::U32(self.fold_impl(src, src_l, |x, y| x > y, |_v, i| i as u32)?)
+ }
+ (true, false) => {
+ CpuStorage::U32(self.fold_impl(src, src_l, |x, y| x < y, |_v, i| i as u32)?)
+ }
+ };
+ Ok(dst)
+ }
+}
+
+struct ReduceSum<'a> {
+ dst_shape: &'a Shape,
+ reduce_dims: &'a [usize],
+ reduce_dims_and_stride: Vec<(usize, usize)>,
+}
+
+impl<'a> ReduceSum<'a> {
+ #[inline(always)]
+ fn fold_impl<T>(&self, src: &[T], src_l: &Layout, start_elt: T) -> Result<Vec<T>>
+ where
+ T: WithDType,
+ {
+ let mut dst = vec![start_elt; self.dst_shape.elem_count()];
+ match src_l.contiguous_offsets() {
+ Some((o1, o2)) => {
+ let src = &src[o1..o2];
+ // Handle the case where we reduce over the last dimensions separately as it is
+ // fairly common and easy to optimize. This rely on the layout being contiguous!
+ // reduce_dims is sorted, check if it is ranging from a to n-1.
+ let reduce_over_last_dims = self
+ .reduce_dims
+ .iter()
+ .rev()
+ .enumerate()
+ .all(|(i, &v)| v == src_l.shape().rank() - 1 - i);
+ if reduce_over_last_dims {
+ let reduce_sz = self
+ .reduce_dims_and_stride
+ .iter()
+ .map(|(u, _)| u)
+ .product::<usize>();
+ for (dst_i, dst_v) in dst.iter_mut().enumerate() {
+ let src_i = dst_i * reduce_sz;
+ unsafe {
+ T::vec_reduce_sum(
+ src[src_i..src_i + reduce_sz].as_ptr(),
+ dst_v,
+ reduce_sz,
+ )
+ };
+ }
+ return Ok(dst);
+ };
+ for (unstr_index, &src) in src.iter().enumerate() {
+ let mut dst_index = unstr_index;
+ // Set the reduce_dims indexes to 0.
+ for &(dim, stride) in self.reduce_dims_and_stride.iter() {
+ // The compiler is able to optimize the following in a single divmod op.
+ let (pre, post) = (dst_index / stride, dst_index % stride);
+ dst_index = (pre / dim) * stride + post;
+ }
+ dst[dst_index] += src;
+ }
+ }
+ None => {
+ for (unstr_index, src_index) in src_l.strided_index().enumerate() {
+ let mut dst_index = unstr_index;
+ // Set the reduce_dims indexes to 0.
+ for &(dim, stride) in self.reduce_dims_and_stride.iter() {
+ // The compiler is able to optimize the following in a single divmod op.
+ let (pre, post) = (dst_index / stride, dst_index % stride);
+ dst_index = (pre / dim) * stride + post;
+ }
+ dst[dst_index] += src[src_index];
+ }
+ }
+ }
+ Ok(dst)
+ }
+}
+
+impl<'a> Map1 for ReduceSum<'a> {
+ #[inline(always)]
+ fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
+ self.fold_impl(src, src_l, T::zero())
+ }
+}
+
+struct Affine(f64, f64);
+
+impl Map1 for Affine {
+ fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
+ let mul = T::from_f64(self.0);
+ let add = T::from_f64(self.1);
+ Ok(unary_map(vs, layout, |v| v * mul + add))
+ }
+}
+
+struct AvgPool2D((usize, usize), (usize, usize));
+
+impl Map1 for AvgPool2D {
+ fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
+ // https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
+ let (k_h, k_w) = self.0;
+ let (s_h, s_w) = self.1;
+ let (b_sz, c, h, w) = layout.shape().dims4()?;
+ let stride = layout.stride();
+ let (stride_h, stride_w) = (stride[2], stride[3]);
+ let h_out = (h - k_h) / s_h + 1;
+ let w_out = (w - k_w) / s_w + 1;
+ let src_index = layout.start_offset();
+ let mut dst = vec![T::zero(); b_sz * c * h_out * w_out];
+ let scale = 1f64 / (k_h * k_w) as f64;
+ let scale = T::from_f64(scale);
+ for b_idx in 0..b_sz {
+ let dst = &mut dst[b_idx * c * h_out * w_out..];
+ let src_index = src_index + b_idx * stride[0];
+ for c_idx in 0..c {
+ let dst = &mut dst[c_idx * h_out * w_out..];
+ let src_index = src_index + c_idx * stride[1];
+ for h_idx in 0..h_out {
+ for w_idx in 0..w_out {
+ let mut sum = T::zero();
+ for m in 0..k_h {
+ for n in 0..k_w {
+ let m = s_h * h_idx + m;
+ let n = s_w * w_idx + n;
+ sum += src[src_index + m * stride_h + n * stride_w]
+ }
+ }
+ dst[h_idx * w_out + w_idx] = sum * scale;
+ }
+ }
+ }
+ }
+ Ok(dst)
+ }
+}
+
+struct MaxPool2D((usize, usize), (usize, usize));
+
+impl Map1 for MaxPool2D {
+ fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
+ // https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
+ let (k_h, k_w) = self.0;
+ let (s_h, s_w) = self.1;
+ let (b_sz, c, h, w) = layout.shape().dims4()?;
+ let stride = layout.stride();
+ let (stride_h, stride_w) = (stride[2], stride[3]);
+ let h_out = (h - k_h) / s_h + 1;
+ let w_out = (w - k_w) / s_w + 1;
+ let src_index = layout.start_offset();
+ let mut dst = vec![T::zero(); b_sz * c * h_out * w_out];
+ for b_idx in 0..b_sz {
+ let dst = &mut dst[b_idx * c * h_out * w_out..];
+ let src_index = src_index + b_idx * stride[0];
+ for c_idx in 0..c {
+ let dst = &mut dst[c_idx * h_out * w_out..];
+ let src_index = src_index + c_idx * stride[1];
+ for h_idx in 0..h_out {
+ for w_idx in 0..w_out {
+ let mut largest =
+ src[src_index + s_h * h_idx * stride_h + s_w * w_idx * stride_w];
+ for m in 0..k_h {
+ for n in 0..k_w {
+ let m = s_h * h_idx + m;
+ let n = s_w * w_idx + n;
+ if largest < src[src_index + m * stride_h + n * stride_w] {
+ largest = src[src_index + m * stride_h + n * stride_w]
+ }
+ }
+ }
+ dst[h_idx * w_out + w_idx] = largest;
+ }
+ }
+ }
+ }
+ Ok(dst)
+ }
+}
+
+struct UpsampleNearest1D(usize);
+
+impl Map1 for UpsampleNearest1D {
+ fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
+ // TODO: Specialized implementation for the case 2*sz?
+ let dst_sz = self.0;
+ let (b_sz, c, src_sz) = layout.shape().dims3()?;
+ let stride = layout.stride();
+ let stride_sz = stride[2];
+ let src_index = layout.start_offset();
+ let scale_sz = src_sz as f64 / dst_sz as f64;
+ let mut dst = vec![T::zero(); b_sz * c * dst_sz];
+ let src_idxs = (0..dst_sz)
+ .map(|idx| usize::min(src_sz - 1, (idx as f64 * scale_sz) as usize))
+ .collect::<Vec<_>>();
+ for b_idx in 0..b_sz {
+ let dst = &mut dst[b_idx * c * dst_sz..];
+ let src_index = src_index + b_idx * stride[0];
+ for c_idx in 0..c {
+ let dst = &mut dst[c_idx * dst_sz..];
+ let src_index = src_index + c_idx * stride[1];
+ for (idx, src_idx) in src_idxs.iter().enumerate() {
+ dst[idx] = src[src_index + src_idx * stride_sz]
+ }
+ }
+ }
+ Ok(dst)
+ }
+}
+
+struct UpsampleNearest2D(usize, usize);
+
+impl Map1 for UpsampleNearest2D {
+ fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
+ // TODO: Specialized implementation for the case 2*h, 2*w?
+ let (dst_h, dst_w) = (self.0, self.1);
+ let (b_sz, c, src_h, src_w) = layout.shape().dims4()?;
+ let stride = layout.stride();
+ let (stride_h, stride_w) = (stride[2], stride[3]);
+ let src_index = layout.start_offset();
+ let scale_h = src_h as f64 / dst_h as f64;
+ let scale_w = src_w as f64 / dst_w as f64;
+ let mut dst = vec![T::zero(); b_sz * c * dst_h * dst_w];
+ let src_h_idxs = (0..dst_h)
+ .map(|h_idx| usize::min(src_h - 1, (h_idx as f64 * scale_h) as usize))
+ .collect::<Vec<_>>();
+ let src_w_idxs = (0..dst_w)
+ .map(|w_idx| usize::min(src_w - 1, (w_idx as f64 * scale_w) as usize))
+ .collect::<Vec<_>>();
+ for b_idx in 0..b_sz {
+ let dst = &mut dst[b_idx * c * dst_h * dst_w..];
+ let src_index = src_index + b_idx * stride[0];
+ for c_idx in 0..c {
+ let dst = &mut dst[c_idx * dst_h * dst_w..];
+ let src_index = src_index + c_idx * stride[1];
+ for (h_idx, src_h_idx) in src_h_idxs.iter().enumerate() {
+ for (w_idx, src_w_idx) in src_w_idxs.iter().enumerate() {
+ let src_index = src_index + src_h_idx * stride_h + src_w_idx * stride_w;
+ dst[h_idx * dst_w + w_idx] = src[src_index]
+ }
+ }
+ }
+ }
+ Ok(dst)
+ }
+}
+
+struct Gather<'a, I: IntDType> {
+ ids: &'a [I],
+ ids_l: &'a Layout,
+ dim: usize,
+}
+
+impl<'a, I: IntDType> Map1 for Gather<'a, I> {
+ fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
+ let ids = match self.ids_l.contiguous_offsets() {
+ Some((a, b)) => &self.ids[a..b],
+ None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
+ };
+ let src = match src_l.contiguous_offsets() {
+ Some((a, b)) => &src[a..b],
+ None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
+ };
+ let dim = self.dim;
+ let ids_dims = self.ids_l.dims();
+ let src_dims = src_l.dims();
+ let dst_len: usize = ids_dims.iter().product();
+ let dst_left_len: usize = ids_dims[..dim].iter().product();
+ let dst_dim_len = ids_dims[dim];
+ let dst_right_len: usize = ids_dims[dim + 1..].iter().product();
+
+ let src_dim_len = src_dims[dim];
+ let src_right_len: usize = src_dims[dim + 1..].iter().product();
+
+ let mut dst = vec![T::zero(); dst_len];
+ for left_i in 0..dst_left_len {
+ let start_src_idx = left_i * src_right_len * src_dim_len;
+ let start_dst_idx = left_i * dst_right_len * dst_dim_len;
+ for i in 0..dst_dim_len {
+ let start_dst_idx = start_dst_idx + i * dst_right_len;
+ for right_i in 0..dst_right_len {
+ let dst_idx = start_dst_idx + right_i;
+ let index = ids[dst_idx].as_usize();
+ if index >= src_dim_len {
+ Err(Error::InvalidIndex {
+ index,
+ size: src_dim_len,
+ op: "gather",
+ }
+ .bt())?
+ }
+ let src_idx = start_src_idx + index * src_right_len + right_i;
+ dst[dst_idx] = src[src_idx]
+ }
+ }
+ }
+ Ok(dst)
+ }
+}
+
+struct IndexSelect<'a, T: IntDType> {
+ ids: &'a [T],
+ ids_l: &'a Layout,
+ dim: usize,
+}
+
+impl<'a, I: IntDType> Map1 for IndexSelect<'a, I> {
+ fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
+ let src = match layout.contiguous_offsets() {
+ Some((a, b)) => &src[a..b],
+ None => Err(Error::RequiresContiguous { op: "index-select" }.bt())?,
+ };
+ let dim = self.dim;
+ let n_ids = match self.ids_l.dims() {
+ [n_ids] => *n_ids,
+ d => Err(Error::UnexpectedNumberOfDims {
+ expected: 1,
+ got: d.len(),
+ shape: self.ids_l.shape().clone(),
+ }
+ .bt())?,
+ };
+ let stride_ids = self.ids_l.stride()[0];
+ let mut dst_dims = layout.dims().to_vec();
+ let src_dim = dst_dims[dim];
+ dst_dims[dim] = n_ids;
+ let dst_len: usize = dst_dims.iter().product();
+ let left_len: usize = dst_dims[..dim].iter().product();
+ let right_len: usize = dst_dims[dim + 1..].iter().product();
+ let mut dst = vec![T::zero(); dst_len];
+ for left_i in 0..left_len {
+ let start_src_idx = left_i * right_len * src_dim;
+ let start_dst_idx = left_i * right_len * n_ids;
+ for i in 0..n_ids {
+ let index = self.ids[self.ids_l.start_offset() + stride_ids * i].as_usize();
+ if index >= src_dim {
+ Err(Error::InvalidIndex {
+ index,
+ size: src_dim,
+ op: "index-select",
+ }
+ .bt())?
+ }
+ let start_src_idx = start_src_idx + index * right_len;
+ let start_dst_idx = start_dst_idx + i * right_len;
+ dst[start_dst_idx..start_dst_idx + right_len]
+ .copy_from_slice(&src[start_src_idx..start_src_idx + right_len])
+ }
+ }
+ Ok(dst)
+ }
+}
+
+struct ScatterAdd<'a, I: IntDType> {
+ ids: &'a [I],
+ ids_l: &'a Layout,
+ dim: usize,
+}
+
+impl<'a, I: IntDType> Map2 for ScatterAdd<'a, I> {
+ const OP: &'static str = "scatter-add";
+ fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
+ let dst_len = l1.shape().elem_count();
+ let mut dst = vec![T::zero(); dst_len];
+ copy_strided_src_(v1, &mut dst, 0, l1);
+ let src = match src_l.contiguous_offsets() {
+ None => Err(Error::RequiresContiguous { op: "scatter-add" }.bt())?,
+ Some((o1, o2)) => &src[o1..o2],
+ };
+
+ let dim = self.dim;
+ let ids_dims = self.ids_l.dims();
+ let dst_dims = l1.dims();
+ let dst_dim_len = dst_dims[dim];
+ let dst_right_len: usize = dst_dims[dim + 1..].iter().product();
+
+ let ids_left_len: usize = ids_dims[..dim].iter().product();
+ let ids_dim_len = ids_dims[dim];
+ let ids_right_len: usize = ids_dims[dim + 1..].iter().product();
+
+ let ids = match self.ids_l.contiguous_offsets() {
+ Some((a, b)) => &self.ids[a..b],
+ None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
+ };
+ for left_i in 0..ids_left_len {
+ let start_ids_idx = left_i * ids_right_len * ids_dim_len;
+ let start_dst_idx = left_i * dst_right_len * dst_dim_len;
+ for i in 0..ids_dim_len {
+ let start_ids_idx = start_ids_idx + i * ids_right_len;
+ for right_i in 0..dst_right_len {
+ let ids_idx = start_ids_idx + right_i;
+ let index = ids[ids_idx].as_usize();
+ if index >= dst_dim_len {
+ Err(Error::InvalidIndex {
+ index,
+ size: dst_dim_len,
+ op: "gather",
+ }
+ .bt())?
+ }
+ let dst_idx = start_dst_idx + index * dst_right_len + right_i;
+ dst[dst_idx] += src[ids_idx]
+ }
+ }
+ }
+
+ Ok(dst)
+ }
+}
+
+struct IndexAdd<'a, I: IntDType> {
+ ids: &'a [I],
+ dim: usize,
+}
+
+impl<'a, I: IntDType> Map2 for IndexAdd<'a, I> {
+ const OP: &'static str = "index-add";
+ // https://pytorch.org/docs/stable/generated/torch.Tensor.index_add_.html#torch.Tensor.index_add_
+ // v1, l1 -> self
+ fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
+ let dst_len = l1.shape().elem_count();
+ let mut dst = vec![T::zero(); dst_len];
+ copy_strided_src_(v1, &mut dst, 0, l1);
+ let src = match src_l.contiguous_offsets() {
+ None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
+ Some((o1, o2)) => &src[o1..o2],
+ };
+ let dim = self.dim;
+ let max_idx = l1.dims()[dim];
+ let pre_dim = src_l.dims()[..dim].iter().product::<usize>();
+ let src_dim_sz = src_l.dims()[dim];
+ let post_dim = src_l.dims()[dim + 1..].iter().product::<usize>();
+ if dim == 0 {
+ for (src_idx, dst_idx) in self.ids.iter().enumerate() {
+ let dst_idx = dst_idx.as_usize();
+ if dst_idx >= max_idx {
+ Err(Error::InvalidIndex {
+ index: dst_idx,
+ op: "index-add",
+ size: max_idx,
+ })?
+ }
+ let src_idx = src_idx * post_dim;
+ let dst_idx = dst_idx * post_dim;
+ let src = &src[src_idx..src_idx + post_dim];
+ let dst = &mut dst[dst_idx..dst_idx + post_dim];
+ for (d, &s) in dst.iter_mut().zip(src.iter()) {
+ *d += s
+ }
+ }
+ } else {
+ for (src_idx, dst_idx) in self.ids.iter().enumerate() {
+ let dst_idx = dst_idx.as_usize();
+ if dst_idx >= max_idx {
+ Err(Error::InvalidIndex {
+ index: dst_idx,
+ op: "index-add",
+ size: max_idx,
+ })?
+ }
+ for pre_i in 0..pre_dim {
+ let pre_src_i = (pre_i * src_dim_sz + src_idx) * post_dim;
+ let pre_dst_i = (pre_i * max_idx + dst_idx) * post_dim;
+ let src = &src[pre_src_i..pre_src_i + post_dim];
+ let dst = &mut dst[pre_dst_i..pre_dst_i + post_dim];
+ for (d, &s) in dst.iter_mut().zip(src.iter()) {
+ *d += s
+ }
+ }
+ }
+ }
+ Ok(dst)
+ }
+}
+
+#[allow(clippy::too_many_arguments)]
+fn copy2d_<T: Copy>(
+ src: &[T],
+ dst: &mut [T],
+ d1: usize,
+ d2: usize,
+ src_stride1: usize,
+ dst_stride1: usize,
+ src_offset: usize,
+ dst_offset: usize,
+) {
+ for i1 in 0..d1 {
+ let dst_idx = i1 * dst_stride1 + dst_offset;
+ let src_idx = i1 * src_stride1 + src_offset;
+ let dst = &mut dst[dst_idx..dst_idx + d2];
+ let src = &src[src_idx..src_idx + d2];
+ dst.copy_from_slice(src)
+ }
+}
+
+fn copy_strided_src_<T: Copy>(src: &[T], dst: &mut [T], dst_offset: usize, src_l: &Layout) {
+ match src_l.strided_blocks() {
+ crate::StridedBlocks::SingleBlock { start_offset, len } => {
+ let to_copy = (dst.len() - dst_offset).min(len);
+ dst[dst_offset..dst_offset + to_copy]
+ .copy_from_slice(&src[start_offset..start_offset + to_copy])
+ }
+ crate::StridedBlocks::MultipleBlocks {
+ block_start_index,
+ block_len: 1,
+ } => {
+ for (dst_index, src_index) in block_start_index.enumerate() {
+ let dst_index = dst_index + dst_offset;
+ if dst_index >= dst.len() {
+ break;
+ }
+ dst[dst_index] = src[src_index]
+ }
+ }
+ crate::StridedBlocks::MultipleBlocks {
+ block_start_index,
+ block_len,
+ } => {
+ let mut dst_index = dst_offset;
+ for src_index in block_start_index {
+ let next_dst_index = dst_index + block_len;
+ if dst_index >= dst.len() {
+ break;
+ }
+ let to_copy = usize::min(block_len, dst.len() - dst_index);
+ dst[dst_index..dst_index + to_copy]
+ .copy_from_slice(&src[src_index..src_index + to_copy]);
+ dst_index = next_dst_index
+ }
+ }
+ }
+}
+
+struct Conv1D<'a>(&'a crate::conv::ParamsConv1D);
+
+impl<'a> Map2 for Conv1D<'a> {
+ const OP: &'static str = "conv1d";
+ fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
+ let p = self.0;
+ let inp = &inp[inp_l.start_offset()..];
+ let k = &k[k_l.start_offset()..];
+ let (inp_s0, inp_s1, inp_s2) = crate::shape::dims3(inp_l.stride())?;
+ let (k_s0, k_s1, k_s2) = crate::shape::dims3(k_l.stride())?;
+ let l_out = p.l_out();
+ let dst_elems = p.c_out * l_out * p.b_size;
+ // The output shape is [b_size, c_out, l_out]
+ let dst = vec![T::zero(); dst_elems];
+
+ // TODO: Avoid making this copy if `inp` already has the appropriate layout.
+ let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.l_in];
+ for b_idx in 0..p.b_size {
+ for src_l in 0..p.l_in {
+ for src_c_idx in 0..p.c_in {
+ let inp_idx = b_idx * inp_s0 + src_c_idx * inp_s1 + src_l * inp_s2;
+ inp_cont[b_idx * p.l_in * p.c_in + src_l * p.c_in + src_c_idx] = inp[inp_idx]
+ }
+ }
+ }
+
+ for offset in 0..p.k_size {
+ (0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
+ let dst_idx = dst_c_idx * l_out;
+ let k_cont = (0..p.c_in)
+ .map(|c_in_idx| k[dst_c_idx * k_s0 + c_in_idx * k_s1 + offset * k_s2])
+ .collect::<Vec<_>>();
+ for b_idx in 0..p.b_size {
+ let dst_idx = dst_idx + b_idx * p.c_out * l_out;
+ for dst_l in 0..l_out {
+ let dst_idx = dst_idx + dst_l;
+ let src_l = p.stride * dst_l + offset * p.dilation;
+ if src_l < p.padding || src_l >= p.padding + p.l_in {
+ continue;
+ }
+ let src_l = src_l - p.padding;
+ let inp_cont = &inp_cont[b_idx * p.l_in * p.c_in + src_l * p.c_in..];
+ assert!(inp_cont.len() >= p.c_in);
+ assert!(k_cont.len() >= p.c_in);
+ let mut d = T::zero();
+ unsafe { T::vec_dot(inp_cont.as_ptr(), k_cont.as_ptr(), &mut d, p.c_in) }
+ let dst_p = dst.as_ptr();
+ // Safety: dst_idx are uniques per dst_c_idx which is used to parallelise
+ // the different tasks so no two threads can try to write at the same
+ // location.
+ unsafe {
+ let ptr = dst_p.add(dst_idx) as *mut T;
+ *ptr += d
+ }
+ }
+ }
+ })
+ }
+ Ok(dst)
+ }
+}
+
+struct Im2Col1D {
+ l_k: usize,
+ stride: usize,
+ dilation: usize,
+ padding: usize,
+}
+
+impl Im2Col1D {
+ fn l_out(&self, l: usize) -> usize {
+ (l + 2 * self.padding - self.dilation * (self.l_k - 1) - 1) / self.stride + 1
+ }
+}
+
+impl Map1 for Im2Col1D {
+ fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
+ let &Self {
+ l_k,
+ stride,
+ dilation,
+ padding,
+ } = self;
+ let (b, c, l) = layout.shape().dims3()?;
+ let l_out = self.l_out(l);
+ let src = &vs[layout.start_offset()..];
+ let mut dst = vec![T::zero(); b * l_out * c * l_k];
+ let (src_s0, src_s1, src_s2) = {
+ let s = layout.stride();
+ (s[0], s[1], s[2])
+ };
+ // TODO: provide specialized kernels for the common use cases.
+ // - l_k = 1
+ // - padding = 0
+ // - stride = 1
+ // - dilation = 1
+ for b_idx in 0..b {
+ let src_idx = b_idx * src_s0;
+ let dst_idx = b_idx * l_out * c * l_k;
+ for l_idx in 0..l_out {
+ let dst_idx = dst_idx + l_idx * c * l_k;
+ for c_idx in 0..c {
+ let dst_idx = dst_idx + c_idx * l_k;
+ let src_idx = c_idx * src_s1 + src_idx;
+ for l_k_idx in 0..l_k {
+ let src_l = l_idx * stride + l_k_idx * dilation;
+ if padding != 0 && (src_l < padding || src_l >= l + padding) {
+ continue;
+ }
+ let src_l = src_l - padding;
+ let src_idx = src_idx + src_l * src_s2;
+ let dst_idx = dst_idx + l_k_idx;
+ dst[dst_idx] = src[src_idx]
+ }
+ }
+ }
+ }
+ Ok(dst)
+ }
+}
+
+struct Im2Col {
+ h_k: usize,
+ w_k: usize,
+ stride: usize,
+ dilation: usize,
+ padding: usize,
+}
+
+impl Im2Col {
+ fn hw_out(&self, h: usize, w: usize) -> (usize, usize) {
+ let h_out = (h + 2 * self.padding - self.dilation * (self.h_k - 1) - 1) / self.stride + 1;
+ let w_out = (w + 2 * self.padding - self.dilation * (self.w_k - 1) - 1) / self.stride + 1;
+ (h_out, w_out)
+ }
+}
+
+impl Map1 for Im2Col {
+ fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
+ let &Self {
+ h_k,
+ w_k,
+ stride,
+ dilation,
+ padding,
+ } = self;
+ let (b, c, h, w) = layout.shape().dims4()?;
+ let (h_out, w_out) = self.hw_out(h, w);
+ let src = &vs[layout.start_offset()..];
+ let mut dst = vec![T::zero(); b * h_out * w_out * c * h_k * w_k];
+ let (src_s0, src_s1, src_s2, src_s3) = {
+ let s = layout.stride();
+ (s[0], s[1], s[2], s[3])
+ };
+ // TODO: provide specialized kernels for the common use cases.
+ // - h_k = w_k = 1
+ // - padding = 0
+ // - stride = 1
+ // - dilation = 1
+ for b_idx in 0..b {
+ let src_idx = b_idx * src_s0;
+ let dst_idx = b_idx * h_out * w_out * c * h_k * w_k;
+ for h_idx in 0..h_out {
+ let dst_idx = dst_idx + h_idx * w_out * c * h_k * w_k;
+ for w_idx in 0..w_out {
+ let dst_idx = dst_idx + w_idx * c * h_k * w_k;
+ for c_idx in 0..c {
+ let dst_idx = dst_idx + c_idx * h_k * w_k;
+ let src_idx = c_idx * src_s1 + src_idx;
+ for h_k_idx in 0..h_k {
+ let src_h = h_idx * stride + h_k_idx * dilation;
+ if padding != 0 && (src_h < padding || src_h >= h + padding) {
+ continue;
+ }
+ let src_h = src_h - padding;
+ let src_idx = src_idx + src_h * src_s2;
+ let dst_idx = dst_idx + h_k_idx * w_k;
+ for w_k_idx in 0..w_k {
+ let src_w = w_idx * stride + w_k_idx * dilation;
+ if padding != 0 && (src_w < padding || src_w >= w + padding) {
+ continue;
+ }
+ let src_w = src_w - padding;
+ let src_idx = src_idx + src_w * src_s3;
+ let dst_idx = dst_idx + w_k_idx;
+ dst[dst_idx] = src[src_idx]
+ }
+ }
+ }
+ }
+ }
+ }
+ Ok(dst)
+ }
+}
+
+struct Col2Im1D {
+ stride: usize,
+}
+
+impl Map1 for Col2Im1D {
+ fn f<T: WithDType>(&self, col: &[T], l: &Layout) -> Result<Vec<T>> {
+ let (b_size, l_in, c_out, k_size) = l.shape().dims4()?;
+ let stride = self.stride;
+ let l_out = (l_in - 1) * stride + k_size;
+ let mut im = vec![T::zero(); b_size * c_out * l_out];
+ let (dst_s0, dst_s1) = (c_out * l_out, l_out);
+ let (src_s0, src_s1, src_s2) = (c_out * k_size * l_in, c_out * k_size, k_size);
+ for l_in_i in 0..l_in {
+ for k_i in 0..k_size {
+ let l_out_i = l_in_i * stride + k_i;
+ for b_i in 0..b_size {
+ for c_i in 0..c_out {
+ let dst_idx = b_i * dst_s0 + c_i * dst_s1 + l_out_i;
+ let src_idx = b_i * src_s0 + l_in_i * src_s1 + c_i * src_s2 + k_i;
+ im[dst_idx] += col[src_idx]
+ }
+ }
+ }
+ }
+ Ok(im)
+ }
+}
+
+struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D);
+
+impl<'a> Map2 for ConvTranspose1D<'a> {
+ const OP: &'static str = "conv_transpose1d";
+ fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
+ let p = self.0;
+ let inp = &inp[inp_l.start_offset()..];
+ let k = &k[k_l.start_offset()..];
+ let (inp_s0, inp_s1, inp_s2) = crate::shape::dims3(inp_l.stride())?;
+ let (k_s0, k_s1, k_s2) = crate::shape::dims3(k_l.stride())?;
+ let l_out = p.l_out();
+
+ // Output shape: [b_size, c_out, l_out].
+ let dst_elems = p.c_out * l_out * p.b_size;
+ let dst = vec![T::zero(); dst_elems];
+ let dst_s0 = p.c_out * l_out;
+ let dst_s1 = l_out;
+ let dst_s2 = 1;
+
+ // TODO: Avoid making this copy if `inp` already has the appropriate layout.
+ let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.l_in];
+ let cont_s0 = p.l_in * p.c_in;
+ let cont_s1 = p.c_in;
+ for b_idx in 0..p.b_size {
+ for l_idx in 0..p.l_in {
+ for c_idx in 0..p.c_in {
+ let src_idx = b_idx * inp_s0 + c_idx * inp_s1 + l_idx * inp_s2;
+ let dst_idx = b_idx * cont_s0 + l_idx * cont_s1 + c_idx;
+ inp_cont[dst_idx] = inp[src_idx]
+ }
+ }
+ }
+
+ for k_idx in 0..p.k_size {
+ (0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
+ let k_cont = (0..p.c_in)
+ .map(|c_in_idx| k[c_in_idx * k_s0 + dst_c_idx * k_s1 + k_idx * k_s2])
+ .collect::<Vec<_>>();
+ for b_idx in 0..p.b_size {
+ for l_idx in 0..p.l_in {
+ let out_idx = l_idx * p.stride + k_idx * p.dilation;
+ if out_idx < p.padding {
+ continue;
+ }
+ let out_idx = out_idx - p.padding;
+ if out_idx < l_out {
+ let inp_cont = &inp_cont[b_idx * cont_s0 + l_idx * cont_s1..];
+ let dst_idx = b_idx * dst_s0 + out_idx * dst_s2 + dst_c_idx * dst_s1;
+ let mut d = T::zero();
+ unsafe {
+ T::vec_dot(inp_cont.as_ptr(), k_cont.as_ptr(), &mut d, p.c_in)
+ }
+ let dst_p = dst.as_ptr();
+ // Safety: dst_idx are uniques per dst_c_idx which is used to
+ // parallelise the different tasks so no two threads can try to
+ // write at the same location.
+ unsafe {
+ let ptr = dst_p.add(dst_idx) as *mut T;
+ *ptr += d
+ }
+ }
+ }
+ }
+ })
+ }
+ Ok(dst)
+ }
+}
+
+struct Conv2D<'a>(&'a crate::conv::ParamsConv2D);
+
+impl<'a> Map2 for Conv2D<'a> {
+ const OP: &'static str = "conv2d";
+ fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
+ let p = self.0;
+ let inp = &inp[inp_l.start_offset()..];
+ let (inp_s0, inp_s1, inp_s2, inp_s3) = crate::shape::dims4(inp_l.stride())?;
+ let k = &k[k_l.start_offset()..];
+ let (k_s0, k_s1, k_s2, k_s3) = crate::shape::dims4(k_l.stride())?;
+ let (out_h, out_w) = (p.out_h(), p.out_w());
+
+ // Output shape: [b_size, c_out, out_h, out_w].
+ let dst = vec![T::zero(); p.b_size * p.c_out * out_h * out_w];
+
+ // TODO: Avoid making this copy if `inp` already has the appropriate layout.
+ let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.i_h * p.i_w];
+ let cont_s0 = p.i_h * p.i_w * p.c_in;
+ let cont_s1 = p.i_w * p.c_in;
+ let cont_s2 = p.c_in;
+ for b_idx in 0..p.b_size {
+ for h_idx in 0..p.i_h {
+ for w_idx in 0..p.i_w {
+ for c_idx in 0..p.c_in {
+ let src_idx =
+ b_idx * inp_s0 + c_idx * inp_s1 + h_idx * inp_s2 + w_idx * inp_s3;
+ let dst_idx = b_idx * cont_s0 + h_idx * cont_s1 + w_idx * cont_s2 + c_idx;
+ inp_cont[dst_idx] = inp[src_idx]
+ }
+ }
+ }
+ }
+
+ for offset_h in 0..p.k_h {
+ for offset_w in 0..p.k_w {
+ (0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
+ let dst_idx = dst_c_idx * out_w * out_h;
+ let k_cont = (0..p.c_in)
+ .map(|c_in_idx| {
+ k[dst_c_idx * k_s0
+ + c_in_idx * k_s1
+ + offset_h * k_s2
+ + offset_w * k_s3]
+ })
+ .collect::<Vec<_>>();
+ for b_idx in 0..p.b_size {
+ let dst_idx = dst_idx + b_idx * p.c_out * out_h * out_w;
+ for dst_h in 0..out_h {
+ let dst_idx = dst_idx + dst_h * out_w;
+ let src_h = p.stride * dst_h + offset_h * p.dilation;
+ if src_h < p.padding || src_h >= p.i_h + p.padding {
+ continue;
+ }
+ let src_h = src_h - p.padding;
+ for dst_w in 0..out_w {
+ let dst_idx = dst_idx + dst_w;
+ let src_w = p.stride * dst_w + offset_w * p.dilation;
+ if src_w < p.padding || src_w >= p.i_w + p.padding {
+ continue;
+ }
+ let src_w = src_w - p.padding;
+ let inp_cont = &inp_cont
+ [b_idx * cont_s0 + src_h * cont_s1 + src_w * cont_s2..];
+ assert!(inp_cont.len() >= p.c_in);
+ assert!(k_cont.len() >= p.c_in);
+ let mut d = T::zero();
+ unsafe {
+ T::vec_dot(inp_cont.as_ptr(), k_cont.as_ptr(), &mut d, p.c_in)
+ }
+ let dst_p = dst.as_ptr();
+ // Safety: dst_idx are uniques per dst_c_idx which is used to parallelise
+ // the different tasks so no two threads can try to write at the same
+ // location.
+ unsafe {
+ let ptr = dst_p.add(dst_idx) as *mut T;
+ *ptr += d
+ }
+ }
+ }
+ }
+ });
+ }
+ }
+
+ Ok(dst)
+ }
+}
+
+struct ConvTranspose2D<'a>(&'a crate::conv::ParamsConvTranspose2D);
+
+impl<'a> Map2 for ConvTranspose2D<'a> {
+ const OP: &'static str = "conv_transpose2d";
+ fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
+ let p = self.0;
+ let inp = &inp[inp_l.start_offset()..];
+ let (inp_s0, inp_s1, inp_s2, inp_s3) = crate::shape::dims4(inp_l.stride())?;
+ let k = &k[k_l.start_offset()..];
+ let (k_s0, k_s1, k_s2, k_s3) = crate::shape::dims4(k_l.stride())?;
+ let (out_h, out_w) = (p.out_h(), p.out_w());
+
+ // Output shape: [b_size, c_out, out_h, out_w].
+ let dst = vec![T::zero(); p.b_size * p.c_out * out_h * out_w];
+ let dst_s0 = p.c_out * out_h * out_w;
+ let dst_s1 = out_h * out_w;
+ let dst_s2 = out_w;
+ let dst_s3 = 1;
+
+ // TODO: Avoid making this copy if `inp` already has the appropriate layout.
+ let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.i_h * p.i_w];
+ let cont_s0 = p.i_h * p.i_w * p.c_in;
+ let cont_s1 = p.i_w * p.c_in;
+ let cont_s2 = p.c_in;
+ for b_idx in 0..p.b_size {
+ for h_idx in 0..p.i_h {
+ for w_idx in 0..p.i_w {
+ for c_idx in 0..p.c_in {
+ let src_idx =
+ b_idx * inp_s0 + c_idx * inp_s1 + h_idx * inp_s2 + w_idx * inp_s3;
+ let dst_idx = b_idx * cont_s0 + h_idx * cont_s1 + w_idx * cont_s2 + c_idx;
+ inp_cont[dst_idx] = inp[src_idx]
+ }
+ }
+ }
+ }
+
+ for k_y in 0..p.k_h {
+ for k_x in 0..p.k_w {
+ (0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
+ let k_cont = (0..p.c_in)
+ .map(|c_in_idx| {
+ k[c_in_idx * k_s0 + dst_c_idx * k_s1 + k_y * k_s2 + k_x * k_s3]
+ })
+ .collect::<Vec<_>>();
+ for b_idx in 0..p.b_size {
+ for inp_y in 0..p.i_h {
+ for inp_x in 0..p.i_w {
+ let out_x = inp_x * p.stride + k_x * p.dilation;
+ let out_y = inp_y * p.stride + k_y * p.dilation;
+ if out_x < p.padding || out_y < p.padding {
+ continue;
+ }
+ let out_x = out_x - p.padding;
+ let out_y = out_y - p.padding;
+ if out_x < out_w && out_y < out_h {
+ let inp_cont = &inp_cont
+ [b_idx * cont_s0 + inp_y * cont_s1 + inp_x * cont_s2..];
+ let dst_idx = b_idx * dst_s0
+ + out_y * dst_s2
+ + out_x * dst_s3
+ + dst_c_idx * dst_s1;
+ let mut d = T::zero();
+ unsafe {
+ T::vec_dot(
+ inp_cont.as_ptr(),
+ k_cont.as_ptr(),
+ &mut d,
+ p.c_in,
+ )
+ }
+ let dst_p = dst.as_ptr();
+ // Safety: dst_idx are uniques per dst_c_idx which is used to
+ // parallelise the different tasks so no two threads can try to
+ // write at the same location.
+ unsafe {
+ let ptr = dst_p.add(dst_idx) as *mut T;
+ *ptr += d
+ }
+ }
+ }
+ }
+ }
+ })
+ }
+ }
+ Ok(dst)
+ }
+}
+
+struct MatMul((usize, usize, usize, usize));
+
+impl MatMul {
+ fn striding_error(&self, lhs_l: &Layout, rhs_l: &Layout, msg: &'static str) -> Error {
+ Error::MatMulUnexpectedStriding(Box::new(crate::error::MatMulUnexpectedStriding {
+ lhs_l: lhs_l.clone(),
+ rhs_l: rhs_l.clone(),
+ bmnk: self.0,
+ msg,
+ }))
+ .bt()
+ }
+}
+
+impl Map2 for MatMul {
+ const OP: &'static str = "mat_mul";
+
+ #[cfg(all(not(feature = "mkl"), not(feature = "accelerate")))]
+ fn f<T: 'static + WithDType + num_traits::Num + Copy>(
+ &self,
+ lhs: &[T],
+ lhs_l: &Layout,
+ rhs: &[T],
+ rhs_l: &Layout,
+ ) -> Result<Vec<T>> {
+ use gemm::{gemm, Parallelism};
+
+ match T::DTYPE {
+ DType::F16 | DType::F32 | DType::F64 => {}
+ _ => Err(Error::UnsupportedDTypeForOp(T::DTYPE, "matmul").bt())?,
+ }
+
+ let (b, m, n, k) = self.0;
+ let lhs = &lhs[lhs_l.start_offset()..];
+ let rhs = &rhs[rhs_l.start_offset()..];
+
+ let lhs_stride = lhs_l.stride();
+ let rhs_stride = rhs_l.stride();
+ let rank = lhs_stride.len();
+ let lhs_cs = lhs_stride[rank - 1];
+ let lhs_rs = lhs_stride[rank - 2];
+
+ let rhs_cs = rhs_stride[rank - 1];
+ let rhs_rs = rhs_stride[rank - 2];
+
+ let a_skip: usize = match lhs_stride[..rank - 2] {
+ [s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
+ [stride] => stride,
+ [] => m * k,
+ _ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
+ };
+ let b_skip: usize = match rhs_stride[..rank - 2] {
+ [s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
+ [stride] => stride,
+ [] => n * k,
+ _ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
+ };
+ let c_skip: usize = m * n;
+
+ let dst_shape: Shape = (m, n).into();
+ let dst_strides = dst_shape.stride_contiguous();
+ let dst_rs = dst_strides[0];
+ let dst_cs = dst_strides[1];
+
+ let mut dst = vec![T::zero(); b * m * n];
+ let num_threads = crate::utils::get_num_threads();
+ let parallelism = if num_threads > 1 {
+ Parallelism::Rayon(num_threads)
+ } else {
+ Parallelism::None
+ };
+ for step in 0..b {
+ let lhs_p = &lhs[step * a_skip..];
+ let rhs_p = &rhs[step * b_skip..];
+ let dst_p = &mut dst[step * c_skip..];
+ unsafe {
+ gemm(
+ /* m: usize = */ m,
+ /* n: usize = */ n,
+ /* k: usize = */ k,
+ /* dst: *mut T = */ dst_p.as_mut_ptr(),
+ /* dst_cs: isize = */ dst_cs as isize,
+ /* dst_rs: isize = */ dst_rs as isize,
+ /* read_dst: bool = */ false,
+ /* lhs: *const T = */ lhs_p.as_ptr(),
+ /* lhs_cs: isize = */ lhs_cs as isize,
+ /* lhs_rs: isize = */ lhs_rs as isize,
+ /* rhs: *const T = */ rhs_p.as_ptr(),
+ /* rhs_cs: isize = */ rhs_cs as isize,
+ /* rhs_rs: isize = */ rhs_rs as isize,
+ /* alpha: T = */ T::zero(),
+ /* beta: T = */ T::one(),
+ /* conj_dst: bool = */ false,
+ /* conj_lhs: bool = */ false,
+ /* conj_rhs: bool = */ false,
+ parallelism,
+ )
+ }
+ }
+ Ok(dst)
+ }
+
+ #[cfg(feature = "accelerate")]
+ fn f<T: 'static + WithDType + num_traits::Num + Copy>(
+ &self,
+ lhs: &[T],
+ lhs_l: &Layout,
+ rhs: &[T],
+ rhs_l: &Layout,
+ ) -> Result<Vec<T>> {
+ let (b, m, n, k) = self.0;
+ let lhs = &lhs[lhs_l.start_offset()..];
+ let rhs = &rhs[rhs_l.start_offset()..];
+
+ let lhs_stride = lhs_l.stride();
+ let rhs_stride = rhs_l.stride();
+ let rank = lhs_stride.len();
+
+ let a_skip: usize = match lhs_stride[..rank - 2] {
+ [s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
+ [stride] => stride,
+ [] => m * k,
+ _ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
+ };
+ let b_skip: usize = match rhs_stride[..rank - 2] {
+ [s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
+ [stride] => stride,
+ [] => n * k,
+ _ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
+ };
+ let c_skip: usize = m * n;
+
+ let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
+ let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
+ let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
+ let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
+
+ let (lda, transa) = if rhs_m1 == 1 && rhs_m2 == n {
+ (n as i32, b'N')
+ } else if rhs_m1 == k && rhs_m2 == 1 {
+ (k as i32, b'T')
+ } else {
+ Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
+ };
+ // The b tensor has dims batching, m, k (lhs)
+ let (ldb, transb) = if lhs_m1 == 1 && lhs_m2 == k {
+ (k as i32, b'N')
+ } else if lhs_m1 == m && lhs_m2 == 1 {
+ (m as i32, b'T')
+ } else {
+ Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?
+ };
+
+ let mut dst = vec![T::zero(); b * m * n];
+ match T::DTYPE {
+ DType::F16 => {
+ crate::bail!("the accelerate backend does not support f16 matmul")
+ }
+ DType::F32 => {
+ for step in 0..b {
+ let lhs_p = &lhs[step * a_skip..];
+ let rhs_p = &rhs[step * b_skip..];
+ let dst_p = &mut dst[step * c_skip..];
+ unsafe {
+ let a = rhs_p.as_ptr() as *const f32;
+ let b = lhs_p.as_ptr() as *const f32;
+ let c = dst_p.as_mut_ptr() as *mut f32;
+ let a = std::slice::from_raw_parts(a, a_skip);
+ let b = std::slice::from_raw_parts(b, b_skip);
+ let c = std::slice::from_raw_parts_mut(c, c_skip);
+ crate::accelerate::sgemm(
+ transa, transb, /* m= */ n as i32, /* n= */ m as i32,
+ /* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
+ /* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
+ /* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
+ )
+ }
+ }
+ }
+ DType::F64 => {
+ for step in 0..b {
+ let lhs_p = &lhs[step * a_skip..];
+ let rhs_p = &rhs[step * b_skip..];
+ let dst_p = &mut dst[step * c_skip..];
+ unsafe {
+ let a = rhs_p.as_ptr() as *const f64;
+ let b = lhs_p.as_ptr() as *const f64;
+ let c = dst_p.as_mut_ptr() as *mut f64;
+ let a = std::slice::from_raw_parts(a, a_skip);
+ let b = std::slice::from_raw_parts(b, b_skip);
+ let c = std::slice::from_raw_parts_mut(c, c_skip);
+ crate::accelerate::dgemm(
+ transa, transb, /* m= */ n as i32, /* n= */ m as i32,
+ /* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
+ /* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
+ /* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
+ )
+ }
+ }
+ }
+ dtype => Err(Error::UnsupportedDTypeForOp(dtype, "matmul").bt())?,
+ }
+ Ok(dst)
+ }
+
+ #[cfg(feature = "mkl")]
+ fn f<T: 'static + WithDType + num_traits::Num + Copy>(
+ &self,
+ lhs: &[T],
+ lhs_l: &Layout,
+ rhs: &[T],
+ rhs_l: &Layout,
+ ) -> Result<Vec<T>> {
+ let (b, m, n, k) = self.0;
+ let lhs = &lhs[lhs_l.start_offset()..];
+ let rhs = &rhs[rhs_l.start_offset()..];
+
+ let lhs_stride = lhs_l.stride();
+ let rhs_stride = rhs_l.stride();
+ let rank = lhs_stride.len();
+
+ let a_skip: usize = match lhs_stride[..rank - 2] {
+ [s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
+ [stride] => stride,
+ [] => m * k,
+ _ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
+ };
+ let b_skip: usize = match rhs_stride[..rank - 2] {
+ [s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
+ [stride] => stride,
+ [] => n * k,
+ _ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
+ };
+ let c_skip: usize = m * n;
+
+ let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
+ let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
+ let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
+ let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
+
+ let (lda, transa) = if rhs_m1 == 1 && rhs_m2 == n {
+ (n as i32, b'N')
+ } else if rhs_m1 == k && rhs_m2 == 1 {
+ (k as i32, b'T')
+ } else {
+ Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
+ };
+ // The b tensor has dims batching, m, k (lhs)
+ let (ldb, transb) = if lhs_m1 == 1 && lhs_m2 == k {
+ (k as i32, b'N')
+ } else if lhs_m1 == m && lhs_m2 == 1 {
+ (m as i32, b'T')
+ } else {
+ Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?
+ };
+
+ let mut dst = vec![T::zero(); b * m * n];
+ match T::DTYPE {
+ DType::F16 => {
+ for step in 0..b {
+ let lhs_p = &lhs[step * a_skip..];
+ let rhs_p = &rhs[step * b_skip..];
+ let dst_p = &mut dst[step * c_skip..];
+ unsafe {
+ let a = rhs_p.as_ptr() as *const f16;
+ let b = lhs_p.as_ptr() as *const f16;
+ let c = dst_p.as_mut_ptr() as *mut f16;
+ let a = std::slice::from_raw_parts(a, a_skip);
+ let b = std::slice::from_raw_parts(b, b_skip);
+ let c = std::slice::from_raw_parts_mut(c, c_skip);
+ crate::mkl::hgemm(
+ transa,
+ transb,
+ /* m= */ n as i32,
+ /* n= */ m as i32,
+ /* k= */ k as i32,
+ /* alpha= */ f16::ONE,
+ /* a= */ a,
+ /* lda= */ lda,
+ /* b= */ b,
+ /* ldb= */ ldb,
+ /* beta= */ f16::ZERO,
+ /* c= */ c,
+ /* ldc= */ n as i32,
+ )
+ }
+ }
+ }
+ DType::F32 => {
+ for step in 0..b {
+ let lhs_p = &lhs[step * a_skip..];
+ let rhs_p = &rhs[step * b_skip..];
+ let dst_p = &mut dst[step * c_skip..];
+ unsafe {
+ let a = rhs_p.as_ptr() as *const f32;
+ let b = lhs_p.as_ptr() as *const f32;
+ let c = dst_p.as_mut_ptr() as *mut f32;
+ let a = std::slice::from_raw_parts(a, a_skip);
+ let b = std::slice::from_raw_parts(b, b_skip);
+ let c = std::slice::from_raw_parts_mut(c, c_skip);
+ crate::mkl::sgemm(
+ transa, transb, /* m= */ n as i32, /* n= */ m as i32,
+ /* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
+ /* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
+ /* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
+ )
+ }
+ }
+ }
+ DType::F64 => {
+ for step in 0..b {
+ let lhs_p = &lhs[step * a_skip..];
+ let rhs_p = &rhs[step * b_skip..];
+ let dst_p = &mut dst[step * c_skip..];
+ unsafe {
+ let a = rhs_p.as_ptr() as *const f64;
+ let b = lhs_p.as_ptr() as *const f64;
+ let c = dst_p.as_mut_ptr() as *mut f64;
+ let a = std::slice::from_raw_parts(a, a_skip);
+ let b = std::slice::from_raw_parts(b, b_skip);
+ let c = std::slice::from_raw_parts_mut(c, c_skip);
+ crate::mkl::dgemm(
+ transa, transb, /* m= */ n as i32, /* n= */ m as i32,
+ /* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
+ /* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
+ /* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
+ )
+ }
+ }
+ }
+ dtype => Err(Error::UnsupportedDTypeForOp(dtype, "matmul").bt())?,
+ }
+ Ok(dst)
+ }
+}
+
+fn elu<T: num_traits::Float>(v: T, alpha: T) -> T {
+ if v.is_sign_positive() {
+ v
+ } else {
+ (v.exp() - T::one()) * alpha
+ }
+}
+
+impl CpuStorage {
+ pub fn as_slice<D: WithDType>(&self) -> Result<&[D]> {
+ D::cpu_storage_as_slice(self)
+ }
+
+ pub fn concat(storages: &[CpuStorage]) -> Result<CpuStorage> {
+ let storage0 = &storages[0];
+ let s = match storage0 {
+ Self::U8(_) => {
+ let storages = storages
+ .iter()
+ .map(|s| match s {
+ Self::U8(s) => Ok(s.as_slice()),
+ _ => crate::bail!("dtype mismatch"),
+ })
+ .collect::<Result<Vec<_>>>()?
+ .concat();
+ Self::U8(storages)
+ }
+ Self::U32(_) => {
+ let storages = storages
+ .iter()
+ .map(|s| match s {
+ Self::U32(s) => Ok(s.as_slice()),
+ _ => crate::bail!("dtype mismatch"),
+ })
+ .collect::<Result<Vec<_>>>()?
+ .concat();
+ Self::U32(storages)
+ }
+ Self::I64(_) => {
+ let storages = storages
+ .iter()
+ .map(|s| match s {
+ Self::I64(s) => Ok(s.as_slice()),
+ _ => crate::bail!("dtype mismatch"),
+ })
+ .collect::<Result<Vec<_>>>()?
+ .concat();
+ Self::I64(storages)
+ }
+ Self::BF16(_) => {
+ let storages = storages
+ .iter()
+ .map(|s| match s {
+ Self::BF16(s) => Ok(s.as_slice()),
+ _ => crate::bail!("dtype mismatch"),
+ })
+ .collect::<Result<Vec<_>>>()?
+ .concat();
+ Self::BF16(storages)
+ }
+ Self::F16(_) => {
+ let storages = storages
+ .iter()
+ .map(|s| match s {
+ Self::F16(s) => Ok(s.as_slice()),
+ _ => crate::bail!("dtype mismatch"),
+ })
+ .collect::<Result<Vec<_>>>()?
+ .concat();
+ Self::F16(storages)
+ }
+ Self::F32(_) => {
+ let storages = storages
+ .iter()
+ .map(|s| match s {
+ Self::F32(s) => Ok(s.as_slice()),
+ _ => crate::bail!("dtype mismatch"),
+ })
+ .collect::<Result<Vec<_>>>()?
+ .concat();
+ Self::F32(storages)
+ }
+ Self::F64(_) => {
+ let storages = storages
+ .iter()
+ .map(|s| match s {
+ Self::F64(s) => Ok(s.as_slice()),
+ _ => crate::bail!("dtype mismatch"),
+ })
+ .collect::<Result<Vec<_>>>()?
+ .concat();
+ Self::F64(storages)
+ }
+ };
+ Ok(s)
+ }
+}
+
+impl BackendStorage for CpuStorage {
+ type Device = CpuDevice;
+
+ fn dtype(&self) -> DType {
+ match self {
+ Self::U8(_) => DType::U8,
+ Self::U32(_) => DType::U32,
+ Self::I64(_) => DType::I64,
+ Self::BF16(_) => DType::BF16,
+ Self::F16(_) => DType::F16,
+ Self::F32(_) => DType::F32,
+ Self::F64(_) => DType::F64,
+ }
+ }
+
+ fn to_dtype(&self, layout: &Layout, dtype: DType) -> Result<Self> {
+ // TODO: find a way around the quadratic number of cases below.
+ match (self, dtype) {
+ (Self::U8(storage), DType::BF16) => {
+ let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
+ Ok(Self::BF16(data))
+ }
+ (Self::U32(storage), DType::BF16) => {
+ let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
+ Ok(Self::BF16(data))
+ }
+ (Self::I64(storage), DType::BF16) => {
+ let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
+ Ok(Self::BF16(data))
+ }
+ (Self::BF16(storage), DType::BF16) => {
+ let data = unary_map(storage, layout, |v| v);
+ Ok(Self::BF16(data))
+ }
+ (Self::F16(storage), DType::BF16) => {
+ let data = unary_map(storage, layout, |v| bf16::from_f32(v.to_f32()));
+ Ok(Self::BF16(data))
+ }
+ (Self::F32(storage), DType::BF16) => {
+ let data = unary_map(storage, layout, bf16::from_f32);
+ Ok(Self::BF16(data))
+ }
+ (Self::F64(storage), DType::BF16) => {
+ let data = unary_map(storage, layout, bf16::from_f64);
+ Ok(Self::BF16(data))
+ }
+ (Self::U8(storage), DType::F16) => {
+ let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
+ Ok(Self::F16(data))
+ }
+ (Self::U32(storage), DType::F16) => {
+ let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
+ Ok(Self::F16(data))
+ }
+ (Self::I64(storage), DType::F16) => {
+ let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
+ Ok(Self::F16(data))
+ }
+ (Self::BF16(storage), DType::F16) => {
+ let data = unary_map(storage, layout, |v| f16::from_f32(v.to_f32()));
+ Ok(Self::F16(data))
+ }
+ (Self::F16(storage), DType::F16) => {
+ let data = unary_map(storage, layout, |v| v);
+ Ok(Self::F16(data))
+ }
+ (Self::F32(storage), DType::F16) => {
+ let data = unary_map(storage, layout, f16::from_f32);
+ Ok(Self::F16(data))
+ }
+ (Self::F64(storage), DType::F16) => {
+ let data = unary_map(storage, layout, f16::from_f64);
+ Ok(Self::F16(data))
+ }
+ (Self::U8(storage), DType::F32) => {
+ let data = unary_map(storage, layout, |v| v as f32);
+ Ok(Self::F32(data))
+ }
+ (Self::U32(storage), DType::F32) => {
+ let data = unary_map(storage, layout, |v| v as f32);
+ Ok(Self::F32(data))
+ }
+ (Self::I64(storage), DType::F32) => {
+ let data = unary_map(storage, layout, |v| v as f32);
+ Ok(Self::F32(data))
+ }
+ (Self::BF16(storage), DType::F32) => {
+ let data = unary_map(storage, layout, |v| v.to_f32());
+ Ok(Self::F32(data))
+ }
+ (Self::F16(storage), DType::F32) => {
+ let data = unary_map(storage, layout, |v| v.to_f32());
+ Ok(Self::F32(data))
+ }
+ (Self::F32(storage), DType::F32) => {
+ let data = unary_map(storage, layout, |v| v);
+ Ok(Self::F32(data))
+ }
+ (Self::F64(storage), DType::F32) => {
+ let data = unary_map(storage, layout, |v| v as f32);
+ Ok(Self::F32(data))
+ }
+ (Self::U8(storage), DType::U8) => {
+ let data = unary_map(storage, layout, |v| v);
+ Ok(Self::U8(data))
+ }
+ (Self::BF16(storage), DType::U8) => {
+ let data = unary_map(storage, layout, |v| v.to_f32() as u8);
+ Ok(Self::U8(data))
+ }
+ (Self::F16(storage), DType::U8) => {
+ let data = unary_map(storage, layout, |v| v.to_f32() as u8);
+ Ok(Self::U8(data))
+ }
+ (Self::F32(storage), DType::U8) => {
+ let data = unary_map(storage, layout, |v| v as u8);
+ Ok(Self::U8(data))
+ }
+ (Self::F64(storage), DType::U8) => {
+ let data = unary_map(storage, layout, |v| v as u8);
+ Ok(Self::U8(data))
+ }
+ (Self::U32(storage), DType::U8) => {
+ let data = unary_map(storage, layout, |v| v as u8);
+ Ok(Self::U8(data))
+ }
+ (Self::I64(storage), DType::U8) => {
+ let data = unary_map(storage, layout, |v| v as u8);
+ Ok(Self::U8(data))
+ }
+ (Self::U8(storage), DType::U32) => {
+ let data = unary_map(storage, layout, |v| v as u32);
+ Ok(Self::U32(data))
+ }
+ (Self::U32(storage), DType::U32) => {
+ let data = unary_map(storage, layout, |v| v);
+ Ok(Self::U32(data))
+ }
+ (Self::I64(storage), DType::U32) => {
+ let data = unary_map(storage, layout, |v| v as u32);
+ Ok(Self::U32(data))
+ }
+ (Self::BF16(storage), DType::U32) => {
+ let data = unary_map(storage, layout, |v| v.to_f32() as u32);
+ Ok(Self::U32(data))
+ }
+ (Self::F16(storage), DType::U32) => {
+ let data = unary_map(storage, layout, |v| v.to_f32() as u32);
+ Ok(Self::U32(data))
+ }
+ (Self::F32(storage), DType::U32) => {
+ let data = unary_map(storage, layout, |v| v as u32);
+ Ok(Self::U32(data))
+ }
+ (Self::F64(storage), DType::U32) => {
+ let data = unary_map(storage, layout, |v| v as u32);
+ Ok(Self::U32(data))
+ }
+ (Self::U8(storage), DType::I64) => {
+ let data = unary_map(storage, layout, |v| v as i64);
+ Ok(Self::I64(data))
+ }
+ (Self::U32(storage), DType::I64) => {
+ let data = unary_map(storage, layout, |v| v as i64);
+ Ok(Self::I64(data))
+ }
+ (Self::I64(storage), DType::I64) => {
+ let data = unary_map(storage, layout, |v| v);
+ Ok(Self::I64(data))
+ }
+ (Self::BF16(storage), DType::I64) => {
+ let data = unary_map(storage, layout, |v| v.to_f32() as i64);
+ Ok(Self::I64(data))
+ }
+ (Self::F16(storage), DType::I64) => {
+ let data = unary_map(storage, layout, |v| v.to_f32() as i64);
+ Ok(Self::I64(data))
+ }
+ (Self::F32(storage), DType::I64) => {
+ let data = unary_map(storage, layout, |v| v as i64);
+ Ok(Self::I64(data))
+ }
+ (Self::F64(storage), DType::I64) => {
+ let data = unary_map(storage, layout, |v| v as i64);
+ Ok(Self::I64(data))
+ }
+ (Self::U8(storage), DType::F64) => {
+ let data = unary_map(storage, layout, |v| v as f64);
+ Ok(Self::F64(data))
+ }
+ (Self::U32(storage), DType::F64) => {
+ let data = unary_map(storage, layout, |v| v as f64);
+ Ok(Self::F64(data))
+ }
+ (Self::I64(storage), DType::F64) => {
+ let data = unary_map(storage, layout, |v| v as f64);
+ Ok(Self::F64(data))
+ }
+ (Self::BF16(storage), DType::F64) => {
+ let data = unary_map(storage, layout, |v| v.to_f64());
+ Ok(Self::F64(data))
+ }
+ (Self::F16(storage), DType::F64) => {
+ let data = unary_map(storage, layout, |v| v.to_f64());
+ Ok(Self::F64(data))
+ }
+ (Self::F32(storage), DType::F64) => {
+ let data = unary_map(storage, layout, |v| v as f64);
+ Ok(Self::F64(data))
+ }
+ (Self::F64(storage), DType::F64) => {
+ let data = unary_map(storage, layout, |v| v);
+ Ok(Self::F64(data))
+ }
+ }
+ }
+
+ fn reduce_op(&self, op: ReduceOp, layout: &Layout, reduce_dims: &[usize]) -> Result<Self> {
+ match op {
+ ReduceOp::Sum => {
+ let src_dims = layout.dims();
+ let mut dst_dims = src_dims.to_vec();
+ for &dim in reduce_dims.iter() {
+ dst_dims[dim] = 1;
+ }
+ let dst_shape = Shape::from(dst_dims);
+ let mut reduce_dims = reduce_dims.to_vec();
+ // Sort the reduce_dims as they have to be processed from left to right when converting the
+ // indexes.
+ reduce_dims.sort();
+ let reduce_dims_and_stride: Vec<_> = reduce_dims
+ .iter()
+ .map(|&d| (src_dims[d], src_dims[d + 1..].iter().product::<usize>()))
+ .collect();
+ ReduceSum {
+ dst_shape: &dst_shape,
+ reduce_dims: &reduce_dims,
+ reduce_dims_and_stride,
+ }
+ .map(self, layout)
+ }
+ ReduceOp::Min | ReduceOp::ArgMin | ReduceOp::Max | ReduceOp::ArgMax => {
+ let reduce_dim_index = match reduce_dims {
+ [reduce_dim_index] => *reduce_dim_index,
+ _ => {
+ let op = match op {
+ ReduceOp::Min => "min",
+ ReduceOp::ArgMin => "argmin",
+ ReduceOp::Max => "max",
+ ReduceOp::ArgMax => "argmax",
+ _ => unreachable!(),
+ };
+ let dims = reduce_dims.to_vec();
+ Err(Error::OnlySingleDimension { op, dims })?
+ }
+ };
+ let (use_min, return_index) = match op {
+ ReduceOp::Min => (true, false),
+ ReduceOp::ArgMin => (true, true),
+ ReduceOp::Max => (false, false),
+ ReduceOp::ArgMax => (false, true),
+ _ => unreachable!(),
+ };
+ ReduceIndex {
+ reduce_dim_index,
+ use_min,
+ return_index,
+ }
+ .map(self, layout)
+ }
+ }
+ }
+
+ fn cmp(&self, op: CmpOp, rhs: &Self, lhs_l: &Layout, rhs_l: &Layout) -> Result<Self> {
+ Cmp(op).map(self, lhs_l, rhs, rhs_l)
+ }
+
+ fn affine(&self, layout: &Layout, mul: f64, add: f64) -> Result<Self> {
+ Affine(mul, add).map(self, layout)
+ }
+
+ fn avg_pool2d(
+ &self,
+ layout: &Layout,
+ kernel_size: (usize, usize),
+ stride: (usize, usize),
+ ) -> Result<Self> {
+ AvgPool2D(kernel_size, stride).map(self, layout)
+ }
+
+ fn max_pool2d(
+ &self,
+ layout: &Layout,
+ kernel_size: (usize, usize),
+ stride: (usize, usize),
+ ) -> Result<Self> {
+ MaxPool2D(kernel_size, stride).map(self, layout)
+ }
+
+ fn upsample_nearest1d(&self, layout: &Layout, sz: usize) -> Result<Self> {
+ UpsampleNearest1D(sz).map(self, layout)
+ }
+
+ fn upsample_nearest2d(&self, layout: &Layout, h: usize, w: usize) -> Result<Self> {
+ UpsampleNearest2D(h, w).map(self, layout)
+ }
+
+ fn powf(&self, layout: &Layout, e: f64) -> Result<Self> {
+ use num_traits::Float;
+ // TODO: Have some generic map for functions that apply on num_traits::Float elements.
+ match self {
+ Self::BF16(storage) => {
+ let data = unary_map(storage, layout, |v| v.powf(bf16::from_f64(e)));
+ Ok(Self::BF16(data))
+ }
+ Self::F16(storage) => {
+ let data = unary_map(storage, layout, |v| v.powf(f16::from_f64(e)));
+ Ok(Self::F16(data))
+ }
+ Self::F32(storage) => {
+ let data = unary_map(storage, layout, |v| v.powf(e as f32));
+ Ok(Self::F32(data))
+ }
+ Self::F64(storage) => {
+ let data = unary_map(storage, layout, |v| v.powf(e));
+ Ok(Self::F64(data))
+ }
+ Self::U8(_) => Err(Error::UnsupportedDTypeForOp(DType::U8, "elu").bt()),
+ Self::U32(_) => Err(Error::UnsupportedDTypeForOp(DType::U32, "elu").bt()),
+ Self::I64(_) => Err(Error::UnsupportedDTypeForOp(DType::I64, "elu").bt()),
+ }
+ }
+
+ fn elu(&self, layout: &Layout, alpha: f64) -> Result<Self> {
+ // TODO: Have some generic map for functions that apply on num_traits::Float elements.
+ match self {
+ Self::BF16(storage) => {
+ let data = unary_map(storage, layout, |v| elu(v, bf16::from_f64(alpha)));
+ Ok(Self::BF16(data))
+ }
+ Self::F16(storage) => {
+ let data = unary_map(storage, layout, |v| elu(v, f16::from_f64(alpha)));
+ Ok(Self::F16(data))
+ }
+ Self::F32(storage) => {
+ let data = unary_map(storage, layout, |v| elu(v, f32::from_f64(alpha)));
+ Ok(Self::F32(data))
+ }
+ Self::F64(storage) => {
+ let data = unary_map(storage, layout, |v| elu(v, alpha));
+ Ok(Self::F64(data))
+ }
+ Self::U8(_) => Err(Error::UnsupportedDTypeForOp(DType::U8, "elu").bt()),
+ Self::U32(_) => Err(Error::UnsupportedDTypeForOp(DType::U32, "elu").bt()),
+ Self::I64(_) => Err(Error::UnsupportedDTypeForOp(DType::I64, "elu").bt()),
+ }
+ }
+
+ fn unary_impl<B: UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
+ match self {
+ Self::BF16(storage) => {
+ if B::BF16_VEC {
+ let data = unary_map_vec(storage, layout, B::bf16, B::bf16_vec);
+ Ok(Self::BF16(data))
+ } else {
+ let data = unary_map(storage, layout, B::bf16);
+ Ok(Self::BF16(data))
+ }
+ }
+ Self::F16(storage) => {
+ if B::F16_VEC {
+ let data = unary_map_vec(storage, layout, B::f16, B::f16_vec);
+ Ok(Self::F16(data))
+ } else {
+ let data = unary_map(storage, layout, B::f16);
+ Ok(Self::F16(data))
+ }
+ }
+ Self::F32(storage) => {
+ if B::F32_VEC {
+ let data = unary_map_vec(storage, layout, B::f32, B::f32_vec);
+ Ok(Self::F32(data))
+ } else {
+ let data = unary_map(storage, layout, B::f32);
+ Ok(Self::F32(data))
+ }
+ }
+ Self::F64(storage) => {
+ if B::F64_VEC {
+ let data = unary_map_vec(storage, layout, B::f64, B::f64_vec);
+ Ok(Self::F64(data))
+ } else {
+ let data = unary_map(storage, layout, B::f64);
+ Ok(Self::F64(data))
+ }
+ }
+ Self::U8(storage) => {
+ let data = unary_map(storage, layout, B::u8);
+ Ok(Self::U8(data))
+ }
+ Self::U32(storage) => {
+ let data = unary_map(storage, layout, B::u32);
+ Ok(Self::U32(data))
+ }
+ Self::I64(storage) => {
+ let data = unary_map(storage, layout, B::i64);
+ Ok(Self::I64(data))
+ }
+ }
+ }
+
+ fn binary_impl<B: BinaryOpT>(
+ &self,
+ rhs: &Self,
+ lhs_l: &Layout,
+ rhs_l: &Layout,
+ ) -> Result<Self> {
+ match (self, rhs) {
+ (Self::BF16(lhs), Self::BF16(rhs)) => {
+ let data = if B::BF16_VEC {
+ binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::bf16, B::bf16_vec)
+ } else {
+ binary_map(lhs_l, rhs_l, lhs, rhs, B::bf16)
+ };
+ Ok(Self::BF16(data))
+ }
+ (Self::F16(lhs), Self::F16(rhs)) => {
+ let data = if B::F16_VEC {
+ binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::f16, B::f16_vec)
+ } else {
+ binary_map(lhs_l, rhs_l, lhs, rhs, B::f16)
+ };
+ Ok(Self::F16(data))
+ }
+ (Self::F32(lhs), Self::F32(rhs)) => {
+ let data = if B::F32_VEC {
+ binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::f32, B::f32_vec)
+ } else {
+ binary_map(lhs_l, rhs_l, lhs, rhs, B::f32)
+ };
+ Ok(Self::F32(data))
+ }
+ (Self::F64(lhs), Self::F64(rhs)) => {
+ let data = if B::F64_VEC {
+ binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::f64, B::f64_vec)
+ } else {
+ binary_map(lhs_l, rhs_l, lhs, rhs, B::f64)
+ };
+ Ok(Self::F64(data))
+ }
+ (Self::U32(lhs), Self::U32(rhs)) => {
+ let data = if B::U32_VEC {
+ binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::u32, B::u32_vec)
+ } else {
+ binary_map(lhs_l, rhs_l, lhs, rhs, B::u32)
+ };
+ Ok(Self::U32(data))
+ }
+ (Self::I64(lhs), Self::I64(rhs)) => {
+ let data = if B::I64_VEC {
+ binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::i64, B::i64_vec)
+ } else {
+ binary_map(lhs_l, rhs_l, lhs, rhs, B::i64)
+ };
+ Ok(Self::I64(data))
+ }
+ (Self::U8(lhs), Self::U8(rhs)) => {
+ let data = if B::U8_VEC {
+ binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::u8, B::u8_vec)
+ } else {
+ binary_map(lhs_l, rhs_l, lhs, rhs, B::u8)
+ };
+ Ok(Self::U8(data))
+ }
+ _ => {
+ // This should be covered by the dtype check above.
+ Err(Error::DTypeMismatchBinaryOp {
+ lhs: self.dtype(),
+ rhs: rhs.dtype(),
+ op: B::NAME,
+ }
+ .bt())
+ }
+ }
+ }
+
+ fn copy2d(
+ &self,
+ dst: &mut Self,
+ d1: usize,
+ d2: usize,
+ src_s: usize,
+ dst_s: usize,
+ src_o: usize,
+ dst_o: usize,
+ ) -> Result<()> {
+ match (self, dst) {
+ (Self::U8(src), Self::U8(dst)) => copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o),
+ (Self::U32(src), Self::U32(dst)) => {
+ copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
+ }
+ (Self::I64(src), Self::I64(dst)) => {
+ copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
+ }
+ (Self::BF16(src), Self::BF16(dst)) => {
+ copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
+ }
+ (Self::F16(src), Self::F16(dst)) => {
+ copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
+ }
+ (Self::F32(src), Self::F32(dst)) => {
+ copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
+ }
+ (Self::F64(src), Self::F64(dst)) => {
+ copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
+ }
+ (_, dst) => {
+ return Err(Error::DTypeMismatchBinaryOp {
+ lhs: self.dtype(),
+ rhs: dst.dtype(),
+ op: "copy2d",
+ }
+ .bt());
+ }
+ }
+ Ok(())
+ }
+
+ fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
+ match (self, dst) {
+ (Self::U8(src), Self::U8(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
+ (Self::U32(src), Self::U32(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
+ (Self::I64(src), Self::I64(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
+ (Self::BF16(src), Self::BF16(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
+ (Self::F16(src), Self::F16(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
+ (Self::F32(src), Self::F32(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
+ (Self::F64(src), Self::F64(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
+ (_, dst) => {
+ // This should be covered by the dtype check above.
+ return Err(Error::DTypeMismatchBinaryOp {
+ lhs: self.dtype(),
+ rhs: dst.dtype(),
+ op: "copy_strided",
+ }
+ .bt());
+ }
+ }
+ Ok(())
+ }
+
+ fn where_cond(
+ &self,
+ layout: &Layout,
+ t: &Self,
+ t_l: &Layout,
+ f: &Self,
+ f_l: &Layout,
+ ) -> Result<Self> {
+ match self {
+ Self::U8(pred) => WCond(pred, layout).map(t, t_l, f, f_l),
+ Self::U32(pred) => WCond(pred, layout).map(t, t_l, f, f_l),
+ Self::I64(pred) => WCond(pred, layout).map(t, t_l, f, f_l),
+ _ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "where-cond")),
+ }
+ }
+
+ fn conv1d(
+ &self,
+ l: &Layout,
+ kernel: &Self,
+ kernel_l: &Layout,
+ params: &crate::conv::ParamsConv1D,
+ ) -> Result<Self> {
+ if !USE_IM2COL_CONV1D {
+ return Conv1D(params).map(self, l, kernel, kernel_l);
+ }
+ let op = Im2Col1D {
+ l_k: params.k_size,
+ padding: params.padding,
+ stride: params.stride,
+ dilation: params.dilation,
+ };
+ let col = op.map(self, l)?;
+ let b = params.b_size;
+ let n = params.c_out;
+ let l_out = params.l_out();
+ let k = op.l_k * params.c_in;
+ let m = l_out;
+ let col_l = Layout::contiguous((b, m, k));
+ let res = if kernel_l.is_contiguous() {
+ let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
+ .transpose(1, 2)?
+ .broadcast_as((b, k, n))?;
+ col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
+ } else {
+ // Make the kernel contiguous if not already the case.
+ let mut kernel_c = unsafe {
+ self.device()
+ .alloc_uninit(kernel_l.shape(), kernel.dtype())?
+ };
+ kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
+ let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
+ .transpose(1, 2)?
+ .broadcast_as((b, k, n))?;
+ col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
+ };
+ let res_l = Layout::contiguous((b, l_out, params.c_out)).transpose(1, 2)?;
+ let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
+ res.copy_strided_src(&mut res_t, 0, &res_l)?;
+ Ok(res_t)
+ }
+
+ fn conv_transpose1d(
+ &self,
+ l: &Layout,
+ kernel: &Self,
+ kernel_l: &Layout,
+ params: &crate::conv::ParamsConvTranspose1D,
+ ) -> Result<Self> {
+ let can_use_col2im = kernel_l.is_contiguous()
+ && params.dilation == 1
+ && params.padding == 0
+ && params.output_padding == 0;
+ if USE_IM2COL_CONV1D_TR && can_use_col2im {
+ let (b_size, c_in, l_in) = l.shape().dims3()?;
+ let (c_in2, c_out, k_size) = kernel_l.shape().dims3()?;
+ if !kernel_l.is_contiguous() {
+ crate::bail!(
+ "convtr1d: the second argument (kernel) has to be contiguous {kernel_l:?}"
+ )
+ }
+ if c_in != c_in2 {
+ crate::bail!(
+ "convtr1d: shape mismatch on c_in {:?} {:?}",
+ l.shape(),
+ kernel_l.shape()
+ )
+ }
+ let col = {
+ // This merges the last two dimensions of the kernel together.
+ let kernel_l_mm = Layout::new(
+ (b_size, c_in, k_size * c_out).into(),
+ vec![0, k_size * c_out, 1],
+ kernel_l.start_offset(),
+ );
+ self.matmul(
+ kernel,
+ (
+ b_size,
+ /* m */ l_in,
+ /* n */ c_out * k_size,
+ /* k */ c_in,
+ ),
+ &l.transpose(1, 2)?,
+ &kernel_l_mm,
+ )?
+ };
+ let col_l = Layout::contiguous((b_size, l_in, c_out, k_size));
+ Col2Im1D {
+ stride: params.stride,
+ }
+ .map(&col, &col_l)
+ } else {
+ ConvTranspose1D(params).map(self, l, kernel, kernel_l)
+ }
+ }
+
+ fn conv2d(
+ &self,
+ l: &Layout,
+ kernel: &Self,
+ kernel_l: &Layout,
+ params: &crate::conv::ParamsConv2D,
+ ) -> Result<Self> {
+ if !USE_IM2COL_CONV2D {
+ return Conv2D(params).map(self, l, kernel, kernel_l);
+ }
+ let op = Im2Col {
+ h_k: params.k_h,
+ w_k: params.k_w,
+ padding: params.padding,
+ stride: params.stride,
+ dilation: params.dilation,
+ };
+ let col = op.map(self, l)?;
+ let b = params.b_size;
+ let n = params.c_out;
+ let (h_out, w_out) = (params.out_h(), params.out_w());
+ let k = op.h_k * op.w_k * params.c_in;
+ let m = h_out * w_out;
+ let col_l = Layout::contiguous((b, m, k));
+ let res = if kernel_l.is_contiguous() {
+ let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
+ .transpose(1, 2)?
+ .broadcast_as((b, k, n))?;
+ col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
+ } else {
+ // Make the kernel contiguous if not already the case.
+ let mut kernel_c = unsafe {
+ self.device()
+ .alloc_uninit(kernel_l.shape(), kernel.dtype())?
+ };
+ kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
+ let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
+ .transpose(1, 2)?
+ .broadcast_as((b, k, n))?;
+ col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
+ };
+ let res_l = Layout::contiguous((b, h_out, w_out, params.c_out))
+ .transpose(1, 2)?
+ .transpose(1, 3)?;
+ let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
+ res.copy_strided_src(&mut res_t, 0, &res_l)?;
+ Ok(res_t)
+ }
+
+ fn conv_transpose2d(
+ &self,
+ l: &Layout,
+ kernel: &Self,
+ kernel_l: &Layout,
+ params: &crate::conv::ParamsConvTranspose2D,
+ ) -> Result<Self> {
+ ConvTranspose2D(params).map(self, l, kernel, kernel_l)
+ }
+
+ fn index_select(&self, ids: &Self, l: &Layout, ids_l: &Layout, dim: usize) -> Result<Self> {
+ match ids {
+ Self::U8(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
+ Self::U32(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
+ Self::I64(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
+ _ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-select").bt()),
+ }
+ }
+
+ fn gather(&self, l: &Layout, ids: &Self, ids_l: &Layout, dim: usize) -> Result<Self> {
+ match ids {
+ Self::U8(ids) => Gather { ids, ids_l, dim }.map(self, l),
+ Self::U32(ids) => Gather { ids, ids_l, dim }.map(self, l),
+ Self::I64(ids) => Gather { ids, ids_l, dim }.map(self, l),
+ _ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "gather").bt()),
+ }
+ }
+
+ fn scatter_add(
+ &self,
+ l: &Layout,
+ ids: &Self,
+ ids_l: &Layout,
+ src: &Self,
+ src_l: &Layout,
+ dim: usize,
+ ) -> Result<Self> {
+ match ids {
+ Self::U8(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
+ Self::U32(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
+ Self::I64(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
+ _ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "scatter-add").bt()),
+ }
+ }
+
+ fn index_add(
+ &self,
+ l: &Layout,
+ ids: &Self,
+ ids_l: &Layout,
+ src: &Self,
+ src_l: &Layout,
+ dim: usize,
+ ) -> Result<Self> {
+ match ids {
+ Self::U8(ids) => {
+ let ids = match ids_l.contiguous_offsets() {
+ Some((a, b)) => &ids[a..b],
+ None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
+ };
+ IndexAdd { ids, dim }.map(self, l, src, src_l)
+ }
+ Self::U32(ids) => {
+ let ids = match ids_l.contiguous_offsets() {
+ Some((a, b)) => &ids[a..b],
+ None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
+ };
+ IndexAdd { ids, dim }.map(self, l, src, src_l)
+ }
+ Self::I64(ids) => {
+ let ids = match ids_l.contiguous_offsets() {
+ Some((a, b)) => &ids[a..b],
+ None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
+ };
+ IndexAdd { ids, dim }.map(self, l, src, src_l)
+ }
+ _ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-add").bt()),
+ }
+ }
+
+ fn matmul(
+ &self,
+ rhs: &Self,
+ bmnk: (usize, usize, usize, usize),
+ lhs_l: &Layout,
+ rhs_l: &Layout,
+ ) -> Result<Self> {
+ MatMul(bmnk).map(self, lhs_l, rhs, rhs_l)
+ }
+
+ fn device(&self) -> &Self::Device {
+ &CpuDevice
+ }
+
+ fn try_clone(&self, _: &Layout) -> Result<Self> {
+ Ok(self.clone())
+ }
+
+ fn to_cpu_storage(&self) -> Result<CpuStorage> {
+ Ok(self.clone())
+ }
+}
+
+impl BackendDevice for CpuDevice {
+ type Storage = CpuStorage;
+
+ fn location(&self) -> crate::DeviceLocation {
+ crate::DeviceLocation::Cpu
+ }
+
+ fn same_device(&self, _: &Self) -> bool {
+ true
+ }
+
+ fn storage_from_cpu_storage(&self, s: &CpuStorage) -> Result<Self::Storage> {
+ Ok(s.clone())
+ }
+
+ fn storage_from_cpu_storage_owned(&self, s: CpuStorage) -> Result<Self::Storage> {
+ Ok(s)
+ }
+
+ fn new(_: usize) -> Result<Self> {
+ Ok(Self)
+ }
+
+ fn set_seed(&self, _seed: u64) -> Result<()> {
+ crate::bail!("cannot seed the CPU rng with set_seed")
+ }
+
+ fn rand_uniform(&self, shape: &Shape, dtype: DType, min: f64, max: f64) -> Result<CpuStorage> {
+ use rand::prelude::*;
+
+ let elem_count = shape.elem_count();
+ let mut rng = rand::thread_rng();
+ match dtype {
+ DType::U8 | DType::U32 | DType::I64 => {
+ Err(Error::UnsupportedDTypeForOp(dtype, "rand_uniform").bt())
+ }
+ DType::BF16 => {
+ let mut data = Vec::with_capacity(elem_count);
+ let uniform =
+ rand::distributions::Uniform::new(bf16::from_f64(min), bf16::from_f64(max));
+ for _i in 0..elem_count {
+ data.push(rng.sample::<bf16, _>(uniform))
+ }
+ Ok(CpuStorage::BF16(data))
+ }
+ DType::F16 => {
+ let mut data = Vec::with_capacity(elem_count);
+ let uniform =
+ rand::distributions::Uniform::new(f16::from_f64(min), f16::from_f64(max));
+ for _i in 0..elem_count {
+ data.push(rng.sample::<f16, _>(uniform))
+ }
+ Ok(CpuStorage::F16(data))
+ }
+ DType::F32 => {
+ let mut data = Vec::with_capacity(elem_count);
+ let uniform = rand::distributions::Uniform::new(min as f32, max as f32);
+ for _i in 0..elem_count {
+ data.push(rng.sample::<f32, _>(uniform))
+ }
+ Ok(CpuStorage::F32(data))
+ }
+ DType::F64 => {
+ let mut data = Vec::with_capacity(elem_count);
+ let uniform = rand::distributions::Uniform::new(min, max);
+ for _i in 0..elem_count {
+ data.push(rng.sample::<f64, _>(uniform))
+ }
+ Ok(CpuStorage::F64(data))
+ }
+ }
+ }
+
+ fn rand_normal(&self, shape: &Shape, dtype: DType, mean: f64, std: f64) -> Result<CpuStorage> {
+ use rand::prelude::*;
+
+ let elem_count = shape.elem_count();
+ let mut rng = rand::thread_rng();
+ match dtype {
+ DType::U8 | DType::U32 | DType::I64 => {
+ Err(Error::UnsupportedDTypeForOp(dtype, "rand_normal").bt())
+ }
+ DType::BF16 => {
+ let mut data = Vec::with_capacity(elem_count);
+ let normal = rand_distr::Normal::new(bf16::from_f64(mean), bf16::from_f64(std))
+ .map_err(Error::wrap)?;
+ for _i in 0..elem_count {
+ data.push(normal.sample(&mut rng))
+ }
+ Ok(CpuStorage::BF16(data))
+ }
+ DType::F16 => {
+ let mut data = Vec::with_capacity(elem_count);
+ let normal = rand_distr::Normal::new(f16::from_f64(mean), f16::from_f64(std))
+ .map_err(Error::wrap)?;
+ for _i in 0..elem_count {
+ data.push(normal.sample(&mut rng))
+ }
+ Ok(CpuStorage::F16(data))
+ }
+ DType::F32 => {
+ let mut data = Vec::with_capacity(elem_count);
+ let normal =
+ rand_distr::Normal::new(mean as f32, std as f32).map_err(Error::wrap)?;
+ for _i in 0..elem_count {
+ data.push(normal.sample(&mut rng))
+ }
+ Ok(CpuStorage::F32(data))
+ }
+ DType::F64 => {
+ let mut data = Vec::with_capacity(elem_count);
+ let normal = rand_distr::Normal::new(mean, std).map_err(Error::wrap)?;
+ for _i in 0..elem_count {
+ data.push(normal.sample(&mut rng))
+ }
+ Ok(CpuStorage::F64(data))
+ }
+ }
+ }
+
+ #[allow(clippy::uninit_vec)]
+ unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
+ let elem_count = shape.elem_count();
+ // The code below is highly unsafe but hopefully not directly unsound as we only consider
+ // types that are Copy, not Drop, and for which all bit patterns are proper values.
+ // It's still pretty risky, see the following for more details:
+ // https://github.com/rust-lang/rust-clippy/issues/4483
+ let storage = match dtype {
+ DType::U8 => {
+ let mut v = Vec::with_capacity(elem_count);
+ v.set_len(elem_count);
+ CpuStorage::U8(v)
+ }
+ DType::U32 => {
+ let mut v = Vec::with_capacity(elem_count);
+ v.set_len(elem_count);
+ CpuStorage::U32(v)
+ }
+ DType::I64 => {
+ let mut v = Vec::with_capacity(elem_count);
+ v.set_len(elem_count);
+ CpuStorage::I64(v)
+ }
+ DType::BF16 => {
+ let mut v = Vec::with_capacity(elem_count);
+ v.set_len(elem_count);
+ CpuStorage::BF16(v)
+ }
+ DType::F16 => {
+ let mut v = Vec::with_capacity(elem_count);
+ v.set_len(elem_count);
+ CpuStorage::F16(v)
+ }
+ DType::F32 => {
+ let mut v = Vec::with_capacity(elem_count);
+ v.set_len(elem_count);
+ CpuStorage::F32(v)
+ }
+ DType::F64 => {
+ let mut v = Vec::with_capacity(elem_count);
+ v.set_len(elem_count);
+ CpuStorage::F64(v)
+ }
+ };
+ Ok(storage)
+ }
+
+ fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
+ let elem_count = shape.elem_count();
+ let storage = match dtype {
+ DType::U8 => CpuStorage::U8(vec![1u8; elem_count]),
+ DType::U32 => CpuStorage::U32(vec![1u32; elem_count]),
+ DType::I64 => CpuStorage::I64(vec![1i64; elem_count]),
+ DType::BF16 => CpuStorage::BF16(vec![bf16::ONE; elem_count]),
+ DType::F16 => CpuStorage::F16(vec![f16::ONE; elem_count]),
+ DType::F32 => CpuStorage::F32(vec![1f32; elem_count]),
+ DType::F64 => CpuStorage::F64(vec![1f64; elem_count]),
+ };
+ Ok(storage)
+ }
+
+ fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
+ let elem_count = shape.elem_count();
+ let storage = match dtype {
+ DType::U8 => CpuStorage::U8(vec![0u8; elem_count]),
+ DType::U32 => CpuStorage::U32(vec![0u32; elem_count]),
+ DType::I64 => CpuStorage::I64(vec![0i64; elem_count]),
+ DType::BF16 => CpuStorage::BF16(vec![bf16::ZERO; elem_count]),
+ DType::F16 => CpuStorage::F16(vec![f16::ZERO; elem_count]),
+ DType::F32 => CpuStorage::F32(vec![0f32; elem_count]),
+ DType::F64 => CpuStorage::F64(vec![0f64; elem_count]),
+ };
+ Ok(storage)
+ }
+}
+
+#[macro_export]
+macro_rules! map_dtype {
+ ($name:expr, $storage:ident, $fn:expr, ($($dtypes:ident),+)) => {
+ match $storage {
+ $(CpuStorage::$dtypes(__e) => CpuStorage::$dtypes($fn(__e)),)*
+ s => Err(Error::UnsupportedDTypeForOp(s.dtype(), $name).bt())?,
+ }
+ };
+}