summaryrefslogtreecommitdiff
path: root/candle-core/src/tensor.rs
diff options
context:
space:
mode:
authorlaurent <laurent.mazare@gmail.com>2023-06-29 11:56:40 +0100
committerlaurent <laurent.mazare@gmail.com>2023-06-29 11:56:40 +0100
commit2741b39ad37ecb58c110459739ee174fae5f1fa4 (patch)
tree7dce00b52392a2176725a5a6f6987fd095aaabd8 /candle-core/src/tensor.rs
parent3872dc4751c45b625d71c6652c2854a3cc695fb3 (diff)
downloadcandle-2741b39ad37ecb58c110459739ee174fae5f1fa4.tar.gz
candle-2741b39ad37ecb58c110459739ee174fae5f1fa4.tar.bz2
candle-2741b39ad37ecb58c110459739ee174fae5f1fa4.zip
Use broadcasted scalars for const tensors.
Diffstat (limited to 'candle-core/src/tensor.rs')
-rw-r--r--candle-core/src/tensor.rs17
1 files changed, 7 insertions, 10 deletions
diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs
index 4b9b3306..6586834c 100644
--- a/candle-core/src/tensor.rs
+++ b/candle-core/src/tensor.rs
@@ -115,16 +115,14 @@ fn from_storage<S: Into<Shape>>(
}
impl Tensor {
- // TODO: Maybe this should be a broadcast rather than actually creating the full tensor.
fn ones_impl<S: Into<Shape>>(
shape: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
- let shape = shape.into();
- let storage = device.ones(&shape, dtype)?;
- Ok(from_storage(storage, shape, None, is_variable))
+ let storage = device.ones(&crate::shape::SCALAR, dtype)?;
+ from_storage(storage, crate::shape::SCALAR, None, is_variable).broadcast_as(shape)
}
pub fn ones<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> {
@@ -132,6 +130,8 @@ impl Tensor {
}
pub fn ones_var<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> {
+ // Maybe we should allocate some actual storage for vars rather than just using a
+ // broadcasted scalar?
Self::ones_impl(shape, dtype, device, true)
}
@@ -139,16 +139,14 @@ impl Tensor {
Tensor::ones(self.shape(), self.dtype(), &self.device())
}
- // TODO: Maybe this should be a broadcast rather than actually creating the full tensor.
fn zeros_impl<S: Into<Shape>>(
shape: S,
dtype: DType,
device: &Device,
is_variable: bool,
) -> Result<Self> {
- let shape = shape.into();
- let storage = device.zeros(&shape, dtype)?;
- Ok(from_storage(storage, shape, None, is_variable))
+ let storage = device.zeros(&crate::shape::SCALAR, dtype)?;
+ from_storage(storage, crate::shape::SCALAR, None, is_variable).broadcast_as(shape)
}
pub fn zeros<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> {
@@ -599,8 +597,7 @@ impl Tensor {
&self.layout
}
- // TODO: Rename to `stride` once the PR that introduced the layout has been merged.
- pub fn stride_tmp(&self) -> &[usize] {
+ pub fn stride(&self) -> &[usize] {
self.layout.stride()
}