summaryrefslogtreecommitdiff
path: root/candle-core
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-12-12 10:56:11 -0600
committerGitHub <noreply@github.com>2023-12-12 10:56:11 -0600
commit4cb443d00a83d3de994b6c799d501f2ffc2b034b (patch)
treed2853f9c5bf9d944f425965132fb6bf856186be6 /candle-core
parent77252ffb82e328322951becda5fef1e261daa9a9 (diff)
downloadcandle-4cb443d00a83d3de994b6c799d501f2ffc2b034b.tar.gz
candle-4cb443d00a83d3de994b6c799d501f2ffc2b034b.tar.bz2
candle-4cb443d00a83d3de994b6c799d501f2ffc2b034b.zip
Fix the logsumexp test. (#1426)
Diffstat (limited to 'candle-core')
-rw-r--r--candle-core/tests/tensor_tests.rs20
1 files changed, 9 insertions, 11 deletions
diff --git a/candle-core/tests/tensor_tests.rs b/candle-core/tests/tensor_tests.rs
index 95eadc24..a4548d56 100644
--- a/candle-core/tests/tensor_tests.rs
+++ b/candle-core/tests/tensor_tests.rs
@@ -1,4 +1,4 @@
-use candle_core::{test_device, test_utils, D, DType, Device, IndexOp, Result, Tensor};
+use candle_core::{test_device, test_utils, DType, Device, IndexOp, Result, Tensor, D};
fn zeros(device: &Device) -> Result<()> {
let tensor = Tensor::zeros((5, 2), DType::F32, device)?;
@@ -1224,25 +1224,23 @@ fn cumsum() -> Result<()> {
/// A helper function for floating point comparison. Both a and b must be 1D Tensor and contains the same amount of data.
/// Assertion passes if the difference of all pairs of a and b is smaller than epsilon.
-fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) {
- let a_vec: Vec<f64> = a.to_vec1().unwrap();
- let b_vec: Vec<f64> = b.to_vec1().unwrap();
+fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) -> Result<()> {
+ let a_vec: Vec<f64> = a.to_vec1()?;
+ let b_vec: Vec<f64> = b.to_vec1()?;
assert_eq!(a_vec.len(), b_vec.len());
for (a, b) in a_vec.iter().zip(b_vec.iter()) {
assert!((a - b).abs() < epsilon);
}
+ Ok(())
}
#[test]
fn logsumexp() -> Result<()> {
- let input = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
+ let input = Tensor::new(&[[1f64, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
let output = input.logsumexp(D::Minus1)?;
-
- // Expectation get from pytorch.
+ // The expectations obtained from pytorch.
let expected = Tensor::new(&[3.4076, 6.4076], &Device::Cpu)?;
-
- assert_close(&output, &expected, 0.00001);
-
+ assert_close(&output, &expected, 0.00001)?;
Ok(())
-} \ No newline at end of file
+}