summaryrefslogtreecommitdiff
path: root/candle-datasets/src/nlp/tinystories.rs
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-08-05 08:56:50 +0100
committerGitHub <noreply@github.com>2023-08-05 08:56:50 +0100
commit620f83cf66073f033d1fdc9846123c155422677e (patch)
tree028fd4bf3e3318bc172ffffb57cc4a5cac57bb50 /candle-datasets/src/nlp/tinystories.rs
parentf7b2a0391d4a96607b5f208164e365b50ad0bbf7 (diff)
downloadcandle-620f83cf66073f033d1fdc9846123c155422677e.tar.gz
candle-620f83cf66073f033d1fdc9846123c155422677e.tar.bz2
candle-620f83cf66073f033d1fdc9846123c155422677e.zip
Add the candle-datasets crate (#322)
* Move the vision datasets to a separate crate. * Move the batcher bits. * Update the readme. * Move the tiny-stories bits. --------- Co-authored-by: Jane Doe <jane.doe@example.org>
Diffstat (limited to 'candle-datasets/src/nlp/tinystories.rs')
-rw-r--r--candle-datasets/src/nlp/tinystories.rs122
1 files changed, 122 insertions, 0 deletions
diff --git a/candle-datasets/src/nlp/tinystories.rs b/candle-datasets/src/nlp/tinystories.rs
new file mode 100644
index 00000000..c657c9eb
--- /dev/null
+++ b/candle-datasets/src/nlp/tinystories.rs
@@ -0,0 +1,122 @@
+//! Helper functions for the tinystories dataset. This uses the pre-tokenized version as generated
+//! by the tools from https://github.com/karpathy/llama2.c
+use candle::{Device, Result, Tensor};
+
+pub struct Dataset {
+ valid_tokens: Vec<memmap2::Mmap>,
+ train_tokens: Vec<memmap2::Mmap>,
+}
+
+fn mmap_file(p: &std::path::PathBuf) -> Result<memmap2::Mmap> {
+ let file = std::fs::File::open(p)?;
+ let mmap = unsafe { memmap2::MmapOptions::new().map(&file)? };
+ Ok(mmap)
+}
+
+impl Dataset {
+ pub fn new<P: AsRef<std::path::Path>>(dir: P) -> Result<Self> {
+ let dir = dir.as_ref();
+ let mut bin_files = vec![];
+ for file in std::fs::read_dir(dir)?.flatten() {
+ let file = file.path();
+ if let Some(extension) = file.extension() {
+ if extension == "bin" {
+ bin_files.push(file)
+ }
+ }
+ }
+ if bin_files.len() < 2 {
+ candle::bail!("found less than two bin files in {:?}", dir)
+ }
+ bin_files.sort();
+ let valid_tokens = mmap_file(&bin_files[0])?;
+ let train_tokens = bin_files[1..]
+ .iter()
+ .map(mmap_file)
+ .collect::<Result<Vec<_>>>()?;
+ Ok(Self {
+ valid_tokens: vec![valid_tokens],
+ train_tokens,
+ })
+ }
+
+ pub fn train_tokens(&self) -> usize {
+ self.train_tokens.len()
+ }
+
+ pub fn valid_tokens(&self) -> usize {
+ self.valid_tokens.len()
+ }
+}
+
+pub struct DatasetRandomIter<'a> {
+ all_tokens: &'a [memmap2::Mmap],
+ tokens: Vec<&'a memmap2::Mmap>,
+ current_tokens: &'a memmap2::Mmap,
+ indexes_in_bytes: Vec<usize>,
+ seq_len: usize,
+ device: Device,
+}
+
+impl<'a> DatasetRandomIter<'a> {
+ pub fn new(ds: &'a Dataset, valid: bool, seq_len: usize, device: Device) -> Self {
+ use rand::seq::SliceRandom;
+ use rand::thread_rng;
+
+ let all_tokens = if valid {
+ &ds.valid_tokens
+ } else {
+ &ds.train_tokens
+ };
+ let mut tokens = all_tokens.iter().collect::<Vec<_>>();
+ tokens.shuffle(&mut thread_rng());
+ let current_tokens = tokens.pop().unwrap();
+ let seq_len_in_bytes = seq_len * 2;
+ let mut indexes_in_bytes = (0..current_tokens.len() - seq_len_in_bytes)
+ .step_by(seq_len_in_bytes)
+ .collect::<Vec<_>>();
+ indexes_in_bytes.shuffle(&mut thread_rng());
+ Self {
+ all_tokens,
+ tokens,
+ current_tokens,
+ indexes_in_bytes,
+ seq_len,
+ device,
+ }
+ }
+}
+
+impl<'a> Iterator for DatasetRandomIter<'a> {
+ type Item = Result<(Tensor, Tensor)>;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ use byteorder::{LittleEndian, ReadBytesExt};
+ use rand::seq::SliceRandom;
+ use rand::thread_rng;
+
+ let seq_len = self.seq_len;
+ if self.indexes_in_bytes.is_empty() {
+ if self.tokens.is_empty() {
+ self.tokens = self.all_tokens.iter().collect();
+ self.tokens.shuffle(&mut thread_rng());
+ }
+ self.current_tokens = self.tokens.pop().unwrap();
+ let seq_len_in_bytes = self.seq_len * 2;
+ self.indexes_in_bytes = (0..self.current_tokens.len() - seq_len_in_bytes)
+ .step_by(seq_len_in_bytes)
+ .collect::<Vec<_>>();
+ self.indexes_in_bytes.shuffle(&mut thread_rng());
+ }
+ let start_idx = self.indexes_in_bytes.pop().unwrap();
+ let bytes = &self.current_tokens[start_idx..start_idx + 2 * (seq_len + 1)];
+ let mut tokens = vec![0u16; bytes.len() / 2];
+ if let Err(err) = std::io::Cursor::new(bytes).read_u16_into::<LittleEndian>(&mut tokens) {
+ return Some(Err(err.into()));
+ }
+ let tokens = tokens.into_iter().map(|v| v as u32).collect::<Vec<_>>();
+ let inputs = Tensor::new(&tokens[..seq_len], &self.device);
+ let targets = Tensor::new(&tokens[1..], &self.device);
+ Some(candle::error::zip(inputs, targets))
+ }
+}