diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-07-23 21:04:20 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-07-23 20:04:20 +0100 |
commit | b6f7dfb6828dace32e5a7e66a73e22ce5bc26d81 (patch) | |
tree | 5c31c953c762fa75d3a8756973d77d8b88647002 /candle-examples/examples/custom-ops | |
parent | fe8777822390584ac0c080d8de1f51c7b3d0d091 (diff) | |
download | candle-b6f7dfb6828dace32e5a7e66a73e22ce5bc26d81.tar.gz candle-b6f7dfb6828dace32e5a7e66a73e22ce5bc26d81.tar.bz2 candle-b6f7dfb6828dace32e5a7e66a73e22ce5bc26d81.zip |
CPU implementation for the custom RMS example. (#228)
* CPU implementation for the custom RMS example.
* Add the eps parameter.
Diffstat (limited to 'candle-examples/examples/custom-ops')
-rw-r--r-- | candle-examples/examples/custom-ops/main.rs | 25 |
1 files changed, 20 insertions, 5 deletions
diff --git a/candle-examples/examples/custom-ops/main.rs b/candle-examples/examples/custom-ops/main.rs index 9c917cca..1024653b 100644 --- a/candle-examples/examples/custom-ops/main.rs +++ b/candle-examples/examples/custom-ops/main.rs @@ -1,3 +1,7 @@ +// This example illustrates how to implement custom operations. These operations can provide their +// own forward pass (CPU and GPU versions) as well as their backward pass. +// +// In this example we add the RMS normalization operation and implement it for f32. #![allow(dead_code)] #![allow(unused)] @@ -20,7 +24,9 @@ struct Args { cpu: bool, } -struct LayerNorm; +struct LayerNorm { + eps: f32, +} impl CustomOp1 for LayerNorm { fn name(&self) -> &'static str { @@ -28,12 +34,21 @@ impl CustomOp1 for LayerNorm { } fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> { + let (dim1, dim2) = l.shape().dims2()?; let s = s.as_slice::<f32>()?; - let _s = match l.contiguous_offsets() { + let src = match l.contiguous_offsets() { None => Err(Error::Wrapped("input has to be contiguous".into()))?, Some((o1, o2)) => &s[o1..o2], }; - todo!() + let mut dst = Vec::with_capacity(dim1 * dim2); + for idx1 in 0..dim1 { + let src = &src[idx1 * dim2..(idx1 + 1) * dim2]; + let variance = src.iter().map(|x| x * x).sum::<f32>(); + let s_variance = 1f32 / (variance / dim2 as f32 + self.eps).sqrt(); + dst.extend(src.iter().map(|x| x * s_variance)) + } + let storage = candle::WithDType::to_cpu_storage_owned(dst); + Ok((storage, l.shape().clone())) } #[cfg(feature = "cuda")] @@ -56,7 +71,7 @@ impl CustomOp1 for LayerNorm { let elem_count = l.shape().elem_count(); let dst = unsafe { dev.alloc::<f32>(elem_count) }.w()?; let func = dev.get_or_load_func("rms_f32", cuda_kernels::LAYERNORM_KERNELS)?; - let params = (&dst, &s, 1e-5f32, d1, d2); + let params = (&dst, &s, self.eps, d1, d2); let cfg = LaunchConfig { grid_dim: (d1, 1, 1), block_dim: (d2, 1, 1), @@ -74,7 +89,7 @@ fn main() -> anyhow::Result<()> { let device = candle_examples::device(args.cpu)?; let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?; println!("{t}"); - let t = t.custom_op1(LayerNorm)?; + let t = t.custom_op1(LayerNorm { eps: 1e-5 })?; println!("{t}"); Ok(()) } |