diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-09-10 10:20:18 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-09-10 10:20:18 +0100 |
commit | 35f72514f59b3fa4bd321e3e88a75f5b43cf060f (patch) | |
tree | 37dd25098bcf16293744758268a0486337d18431 /candle-examples/examples/efficientnet | |
parent | d3f05eae8c4f2df186b46e433be101ac39fceca5 (diff) | |
download | candle-35f72514f59b3fa4bd321e3e88a75f5b43cf060f.tar.gz candle-35f72514f59b3fa4bd321e3e88a75f5b43cf060f.tar.bz2 candle-35f72514f59b3fa4bd321e3e88a75f5b43cf060f.zip |
Move more models to candle-transformers (#796)
* Move dinov2.
* Move efficientnet.
* Move the quantized llama model.
* Move segment-anything.
Diffstat (limited to 'candle-examples/examples/efficientnet')
-rw-r--r-- | candle-examples/examples/efficientnet/main.rs | 335 |
1 files changed, 3 insertions, 332 deletions
diff --git a/candle-examples/examples/efficientnet/main.rs b/candle-examples/examples/efficientnet/main.rs index cbe2c90a..1e45e301 100644 --- a/candle-examples/examples/efficientnet/main.rs +++ b/candle-examples/examples/efficientnet/main.rs @@ -8,340 +8,11 @@ extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; +use candle::{DType, IndexOp, D}; +use candle_nn::{Module, VarBuilder}; +use candle_transformers::models::efficientnet::{EfficientNet, MBConvConfig}; use clap::{Parser, ValueEnum}; -use candle::{DType, IndexOp, Result, Tensor, D}; -use candle_nn as nn; -use nn::{Module, VarBuilder}; - -// Based on the Python version from torchvision. -// https://github.com/pytorch/vision/blob/0d75d9e5516f446c9c0ef93bd4ed9fea13992d06/torchvision/models/efficientnet.py#L47 -#[derive(Debug, Clone, Copy)] -pub struct MBConvConfig { - expand_ratio: f64, - kernel: usize, - stride: usize, - input_channels: usize, - out_channels: usize, - num_layers: usize, -} - -fn make_divisible(v: f64, divisor: usize) -> usize { - let min_value = divisor; - let new_v = usize::max( - min_value, - (v + divisor as f64 * 0.5) as usize / divisor * divisor, - ); - if (new_v as f64) < 0.9 * v { - new_v + divisor - } else { - new_v - } -} - -fn bneck_confs(width_mult: f64, depth_mult: f64) -> Vec<MBConvConfig> { - let bneck_conf = |e, k, s, i, o, n| { - let input_channels = make_divisible(i as f64 * width_mult, 8); - let out_channels = make_divisible(o as f64 * width_mult, 8); - let num_layers = (n as f64 * depth_mult).ceil() as usize; - MBConvConfig { - expand_ratio: e, - kernel: k, - stride: s, - input_channels, - out_channels, - num_layers, - } - }; - vec![ - bneck_conf(1., 3, 1, 32, 16, 1), - bneck_conf(6., 3, 2, 16, 24, 2), - bneck_conf(6., 5, 2, 24, 40, 2), - bneck_conf(6., 3, 2, 40, 80, 3), - bneck_conf(6., 5, 1, 80, 112, 3), - bneck_conf(6., 5, 2, 112, 192, 4), - bneck_conf(6., 3, 1, 192, 320, 1), - ] -} - -impl MBConvConfig { - fn b0() -> Vec<Self> { - bneck_confs(1.0, 1.0) - } - fn b1() -> Vec<Self> { - bneck_confs(1.0, 1.1) - } - fn b2() -> Vec<Self> { - bneck_confs(1.1, 1.2) - } - fn b3() -> Vec<Self> { - bneck_confs(1.2, 1.4) - } - fn b4() -> Vec<Self> { - bneck_confs(1.4, 1.8) - } - fn b5() -> Vec<Self> { - bneck_confs(1.6, 2.2) - } - fn b6() -> Vec<Self> { - bneck_confs(1.8, 2.6) - } - fn b7() -> Vec<Self> { - bneck_confs(2.0, 3.1) - } -} - -/// Conv2D with same padding. -#[derive(Debug)] -struct Conv2DSame { - conv2d: nn::Conv2d, - s: usize, - k: usize, -} - -impl Conv2DSame { - fn new( - vb: VarBuilder, - i: usize, - o: usize, - k: usize, - stride: usize, - groups: usize, - bias: bool, - ) -> Result<Self> { - let conv_config = nn::Conv2dConfig { - stride, - groups, - ..Default::default() - }; - let conv2d = if bias { - nn::conv2d(i, o, k, conv_config, vb)? - } else { - nn::conv2d_no_bias(i, o, k, conv_config, vb)? - }; - Ok(Self { - conv2d, - s: stride, - k, - }) - } -} - -impl Module for Conv2DSame { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - let s = self.s; - let k = self.k; - let (_, _, ih, iw) = xs.dims4()?; - let oh = (ih + s - 1) / s; - let ow = (iw + s - 1) / s; - let pad_h = usize::max((oh - 1) * s + k - ih, 0); - let pad_w = usize::max((ow - 1) * s + k - iw, 0); - if pad_h > 0 || pad_w > 0 { - let xs = xs.pad_with_zeros(2, pad_h / 2, pad_h - pad_h / 2)?; - let xs = xs.pad_with_zeros(3, pad_w / 2, pad_w - pad_w / 2)?; - self.conv2d.forward(&xs) - } else { - self.conv2d.forward(xs) - } - } -} - -#[derive(Debug)] -struct ConvNormActivation { - conv2d: Conv2DSame, - bn2d: nn::BatchNorm, - activation: bool, -} - -impl ConvNormActivation { - fn new( - vb: VarBuilder, - i: usize, - o: usize, - k: usize, - stride: usize, - groups: usize, - ) -> Result<Self> { - let conv2d = Conv2DSame::new(vb.pp("0"), i, o, k, stride, groups, false)?; - let bn2d = nn::batch_norm(o, 1e-3, vb.pp("1"))?; - Ok(Self { - conv2d, - bn2d, - activation: true, - }) - } - - fn no_activation(self) -> Self { - Self { - activation: false, - ..self - } - } -} - -impl Module for ConvNormActivation { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - let xs = self.conv2d.forward(xs)?; - let xs = self.bn2d.forward(&xs)?; - if self.activation { - swish(&xs) - } else { - Ok(xs) - } - } -} - -#[derive(Debug)] -struct SqueezeExcitation { - fc1: Conv2DSame, - fc2: Conv2DSame, -} - -impl SqueezeExcitation { - fn new(vb: VarBuilder, in_channels: usize, squeeze_channels: usize) -> Result<Self> { - let fc1 = Conv2DSame::new(vb.pp("fc1"), in_channels, squeeze_channels, 1, 1, 1, true)?; - let fc2 = Conv2DSame::new(vb.pp("fc2"), squeeze_channels, in_channels, 1, 1, 1, true)?; - Ok(Self { fc1, fc2 }) - } -} - -impl Module for SqueezeExcitation { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - let residual = xs; - // equivalent to adaptive_avg_pool2d([1, 1]) - let xs = xs.mean_keepdim(D::Minus2)?.mean_keepdim(D::Minus1)?; - let xs = self.fc1.forward(&xs)?; - let xs = swish(&xs)?; - let xs = self.fc2.forward(&xs)?; - let xs = nn::ops::sigmoid(&xs)?; - residual.broadcast_mul(&xs) - } -} - -#[derive(Debug)] -struct MBConv { - expand_cna: Option<ConvNormActivation>, - depthwise_cna: ConvNormActivation, - squeeze_excitation: SqueezeExcitation, - project_cna: ConvNormActivation, - config: MBConvConfig, -} - -impl MBConv { - fn new(vb: VarBuilder, c: MBConvConfig) -> Result<Self> { - let vb = vb.pp("block"); - let exp = make_divisible(c.input_channels as f64 * c.expand_ratio, 8); - let expand_cna = if exp != c.input_channels { - Some(ConvNormActivation::new( - vb.pp("0"), - c.input_channels, - exp, - 1, - 1, - 1, - )?) - } else { - None - }; - let start_index = if expand_cna.is_some() { 1 } else { 0 }; - let depthwise_cna = - ConvNormActivation::new(vb.pp(start_index), exp, exp, c.kernel, c.stride, exp)?; - let squeeze_channels = usize::max(1, c.input_channels / 4); - let squeeze_excitation = - SqueezeExcitation::new(vb.pp(start_index + 1), exp, squeeze_channels)?; - let project_cna = - ConvNormActivation::new(vb.pp(start_index + 2), exp, c.out_channels, 1, 1, 1)? - .no_activation(); - Ok(Self { - expand_cna, - depthwise_cna, - squeeze_excitation, - project_cna, - config: c, - }) - } -} - -impl Module for MBConv { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - let use_res_connect = - self.config.stride == 1 && self.config.input_channels == self.config.out_channels; - let ys = match &self.expand_cna { - Some(expand_cna) => expand_cna.forward(xs)?, - None => xs.clone(), - }; - let ys = self.depthwise_cna.forward(&ys)?; - let ys = self.squeeze_excitation.forward(&ys)?; - let ys = self.project_cna.forward(&ys)?; - if use_res_connect { - ys + xs - } else { - Ok(ys) - } - } -} - -fn swish(s: &Tensor) -> Result<Tensor> { - s * nn::ops::sigmoid(s)? -} - -#[derive(Debug)] -struct EfficientNet { - init_cna: ConvNormActivation, - blocks: Vec<MBConv>, - final_cna: ConvNormActivation, - classifier: nn::Linear, -} - -impl EfficientNet { - fn new(p: VarBuilder, configs: Vec<MBConvConfig>, nclasses: usize) -> Result<Self> { - let f_p = p.pp("features"); - let first_in_c = configs[0].input_channels; - let last_out_c = configs.last().unwrap().out_channels; - let final_out_c = 4 * last_out_c; - let init_cna = ConvNormActivation::new(f_p.pp(0), 3, first_in_c, 3, 2, 1)?; - let nconfigs = configs.len(); - let mut blocks = vec![]; - for (index, cnf) in configs.into_iter().enumerate() { - let f_p = f_p.pp(index + 1); - for r_index in 0..cnf.num_layers { - let cnf = if r_index == 0 { - cnf - } else { - MBConvConfig { - input_channels: cnf.out_channels, - stride: 1, - ..cnf - } - }; - blocks.push(MBConv::new(f_p.pp(r_index), cnf)?) - } - } - let final_cna = - ConvNormActivation::new(f_p.pp(nconfigs + 1), last_out_c, final_out_c, 1, 1, 1)?; - let classifier = nn::linear(final_out_c, nclasses, p.pp("classifier.1"))?; - Ok(Self { - init_cna, - blocks, - final_cna, - classifier, - }) - } -} - -impl Module for EfficientNet { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - let mut xs = self.init_cna.forward(xs)?; - for block in self.blocks.iter() { - xs = block.forward(&xs)? - } - let xs = self.final_cna.forward(&xs)?; - // Equivalent to adaptive_avg_pool2d([1, 1]) -> squeeze(-1) -> squeeze(-1) - let xs = xs.mean(D::Minus1)?.mean(D::Minus1)?; - self.classifier.forward(&xs) - } -} - #[derive(Clone, Copy, Debug, ValueEnum)] enum Which { B0, |