summaryrefslogtreecommitdiff
path: root/candle-examples/examples/llama/convert_checkpoint.py
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-07-11 19:32:10 +0100
committerGitHub <noreply@github.com>2023-07-11 19:32:10 +0100
commit37cad858698e519435c916421cc97b4f6b7fe53e (patch)
treed9a7ddb65a25e53ed684e91b33d4c27eea3dc0d5 /candle-examples/examples/llama/convert_checkpoint.py
parent760f1d70551a761a815e0a9576c8fecb6bde6020 (diff)
downloadcandle-37cad858698e519435c916421cc97b4f6b7fe53e.tar.gz
candle-37cad858698e519435c916421cc97b4f6b7fe53e.tar.bz2
candle-37cad858698e519435c916421cc97b4f6b7fe53e.zip
Resurrect the llama npy support. (#140)
Diffstat (limited to 'candle-examples/examples/llama/convert_checkpoint.py')
-rw-r--r--candle-examples/examples/llama/convert_checkpoint.py251
1 files changed, 191 insertions, 60 deletions
diff --git a/candle-examples/examples/llama/convert_checkpoint.py b/candle-examples/examples/llama/convert_checkpoint.py
index 245c167c..1b44a04a 100644
--- a/candle-examples/examples/llama/convert_checkpoint.py
+++ b/candle-examples/examples/llama/convert_checkpoint.py
@@ -1,68 +1,199 @@
-# Adapted from https://github.com/Lightning-AI/lit-llama/blob/main/scripts/convert_checkpoint.py
-import sys
+# Adapted from:
+# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
+# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
+import argparse
+import gc
+import json
+import math
+import os
+import shutil
+import warnings
+
import torch
import numpy as np
-from typing import Dict
-from pathlib import Path
-
-def tr(v):
- return np.ascontiguousarray(np.transpose(v))
-
-def convert_state_dict(state_dict: Dict[str, torch.Tensor], dtype: torch.dtype = torch.float32) -> Dict[str, torch.Tensor]:
- print("start conv")
-
- def get_and_remove(key, transpose=False):
- v = state_dict[key].to(dtype).numpy()
- if transpose:
- v = tr(v)
- del state_dict[key]
- return v
-
- converted = {}
- converted["transformer.wte.weight"] = get_and_remove("tok_embeddings.weight")
- converted["lm_head.weight"] = get_and_remove("output.weight", transpose=True)
- converted["transformer.ln_f.scale"] = get_and_remove("norm.weight")
-
- for layer_idx in sorted(set([k.split(".")[1] for k in state_dict if k.startswith("layers")])):
- print(layer_idx)
-
- # attention
- # the wq, wk, wv from the FB model are stacked in our model as c_attn
- converted[f"transformer.h.{layer_idx}.attn.c_attn.weight"] = tr(np.concatenate(
- (
- get_and_remove(f"layers.{layer_idx}.attention.wq.weight"),
- get_and_remove(f"layers.{layer_idx}.attention.wk.weight"),
- get_and_remove(f"layers.{layer_idx}.attention.wv.weight"),
+
+"""
+Sample usage:
+
+```
+python src/transformers/models/llama/convert_llama_weights_to_hf.py \
+ --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
+```
+"""
+
+INTERMEDIATE_SIZE_MAP = {
+ "7B": 11008,
+ "13B": 13824,
+ "30B": 17920,
+ "65B": 22016,
+}
+NUM_SHARDS = {
+ "7B": 1,
+ "13B": 2,
+ "30B": 4,
+ "65B": 8,
+}
+
+
+def compute_intermediate_size(n):
+ return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
+
+
+def read_json(path):
+ with open(path, "r") as f:
+ return json.load(f)
+
+
+def write_json(text, path):
+ with open(path, "w") as f:
+ json.dump(text, f)
+
+
+def write_model(model_path, input_base_path, model_size):
+ os.makedirs(model_path, exist_ok=True)
+
+ params = read_json(os.path.join(input_base_path, "params.json"))
+ num_shards = NUM_SHARDS[model_size]
+ n_layers = params["n_layers"]
+ n_heads = params["n_heads"]
+ n_heads_per_shard = n_heads // num_shards
+ dim = params["dim"]
+ dims_per_head = dim // n_heads
+ base = 10000.0
+ inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
+
+ # permute for sliced rotary
+ def permute(w):
+ return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
+
+ print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
+ # Load weights
+ if model_size == "7B":
+ # Not sharded
+ # (The sharded implementation would also work, but this is simpler.)
+ loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
+ else:
+ # Sharded
+ loaded = [
+ torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
+ for i in range(num_shards)
+ ]
+ param_count = 0
+ all_dicts = {}
+ for layer_i in range(n_layers):
+ if model_size == "7B":
+ # Unsharded
+ state_dict = {
+ f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
+ loaded[f"layers.{layer_i}.attention.wq.weight"]
+ ),
+ f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
+ loaded[f"layers.{layer_i}.attention.wk.weight"]
+ ),
+ f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
+ f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
+ f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
+ f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
+ f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
+ f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
+ f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
+ }
+ else:
+ # Sharded
+ # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
+ # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
+ # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
+
+ state_dict = {
+ f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
+ f"layers.{layer_i}.attention_norm.weight"
+ ].clone(),
+ f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
+ f"layers.{layer_i}.ffn_norm.weight"
+ ].clone(),
+ }
+ state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
+ torch.cat(
+ [
+ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
+ for i in range(num_shards)
+ ],
+ dim=0,
+ ).reshape(dim, dim)
+ )
+ state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
+ torch.cat(
+ [
+ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
+ for i in range(num_shards)
+ ],
+ dim=0,
+ ).reshape(dim, dim)
)
- ))
- converted[f"transformer.h.{layer_idx}.attn.c_proj.weight"] = tr(get_and_remove(
- f"layers.{layer_idx}.attention.wo.weight"
- ))
- # mlp
- converted[f"transformer.h.{layer_idx}.mlp.c_fc1.weight"] = get_and_remove(
- f"layers.{layer_idx}.feed_forward.w1.weight", transpose=True,
+ state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
+ [
+ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
+ for i in range(num_shards)
+ ],
+ dim=0,
+ ).reshape(dim, dim)
+
+ state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
+ [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
)
- converted[f"transformer.h.{layer_idx}.mlp.c_proj.weight"] = get_and_remove(
- f"layers.{layer_idx}.feed_forward.w2.weight", transpose=True,
+ state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
+ [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
)
- converted[f"transformer.h.{layer_idx}.mlp.c_fc2.weight"] = get_and_remove(
- f"layers.{layer_idx}.feed_forward.w3.weight", transpose=True,
+ state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
+ [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
)
- # rms norm
- converted[f"transformer.h.{layer_idx}.rms_1.scale"] = get_and_remove(f"layers.{layer_idx}.attention_norm.weight")
- converted[f"transformer.h.{layer_idx}.rms_2.scale"] = get_and_remove(f"layers.{layer_idx}.ffn_norm.weight")
- return converted
-
-def convert_weights(llama_ckpt, *, output_npz: Path = Path("llama.npz"), dtype: str = "float32") -> None:
- dt = getattr(torch, dtype, None)
- if not isinstance(dt, torch.dtype):
- raise ValueError(f"{dtype} is not a valid dtype.")
- checkpoint = torch.load(llama_ckpt, map_location="cpu")
- converted = convert_state_dict(checkpoint, dtype=dt)
- del checkpoint
- np.savez(output_npz, **converted)
+ state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
+ [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
+ )
+
+ state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
+ all_dicts |= state_dict
+
+ if model_size == "7B":
+ # Unsharded
+ state_dict = {
+ "model.embed_tokens.weight": loaded["tok_embeddings.weight"],
+ "model.norm.weight": loaded["norm.weight"],
+ "lm_head.weight": loaded["output.weight"],
+ }
+ else:
+ state_dict = {
+ "model.norm.weight": loaded[0]["norm.weight"],
+ "model.embed_tokens.weight": torch.cat(
+ [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
+ ),
+ "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
+ }
+ all_dicts |= state_dict
+ all_dicts = {k: v.numpy() for k, v in all_dicts.items()}
+ np.savez(os.path.join(model_path, "llama.npz"), **all_dicts)
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--input_dir",
+ help="Location of LLaMA weights, which contains tokenizer.model and model folders",
+ )
+ parser.add_argument(
+ "--model_size",
+ choices=["7B", "13B", "30B", "65B"],
+ )
+ parser.add_argument(
+ "--output_dir",
+ help="Location to write HF model and tokenizer",
+ )
+ args = parser.parse_args()
+ write_model(
+ model_path=args.output_dir,
+ input_base_path=os.path.join(args.input_dir, args.model_size),
+ model_size=args.model_size,
+ )
+
if __name__ == "__main__":
- if len(sys.argv) != 2:
- raise ValueError(f"usage: convert_checkpoint.py ..../LLaMA/7B/consolidated.00.pth")
- convert_weights(sys.argv[1])
+ main()