summaryrefslogtreecommitdiff
path: root/candle-examples/examples/llama2-c/model.rs
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-07-24 09:13:50 +0100
committerGitHub <noreply@github.com>2023-07-24 09:13:50 +0100
commit35b65fed8847646bf3f759711d0028b9befa8970 (patch)
tree9e05853550e6c0a386bec05aad175897e87fd392 /candle-examples/examples/llama2-c/model.rs
parentb6f7dfb6828dace32e5a7e66a73e22ce5bc26d81 (diff)
downloadcandle-35b65fed8847646bf3f759711d0028b9befa8970.tar.gz
candle-35b65fed8847646bf3f759711d0028b9befa8970.tar.bz2
candle-35b65fed8847646bf3f759711d0028b9befa8970.zip
Add llama2.c as an example. (#229)
* Start adding llama2.c. * Model loading. * Add the llama-v2 model. * Start converting the weights. * Rotary embedding tweaks. * Get the model to generate some tokens.
Diffstat (limited to 'candle-examples/examples/llama2-c/model.rs')
-rw-r--r--candle-examples/examples/llama2-c/model.rs318
1 files changed, 318 insertions, 0 deletions
diff --git a/candle-examples/examples/llama2-c/model.rs b/candle-examples/examples/llama2-c/model.rs
new file mode 100644
index 00000000..2fb4b444
--- /dev/null
+++ b/candle-examples/examples/llama2-c/model.rs
@@ -0,0 +1,318 @@
+use candle::{DType, Device, IndexOp, Result, Tensor, D};
+use candle_nn::{Embedding, Linear, VarBuilder};
+use std::collections::HashMap;
+use std::sync::{Arc, Mutex};
+
+#[derive(Debug, Clone)]
+pub struct Config {
+ pub dim: usize, // transformer dimension
+ pub hidden_dim: usize, // for ffn layers
+ pub n_layers: usize, // number of layers
+ pub n_heads: usize, // number of query heads
+ pub n_kv_heads: usize, // number of key/value heads (can be < query heads because of multiquery)
+ pub vocab_size: usize, // vocabulary size, usually 256 (byte-level)
+ pub seq_len: usize, // max sequence length
+ pub norm_eps: f64,
+}
+
+#[derive(Clone)]
+pub struct Cache {
+ masks: Arc<Mutex<HashMap<usize, Tensor>>>,
+ pub use_kv_cache: bool,
+ #[allow(clippy::type_complexity)]
+ kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
+ cos: Tensor,
+ sin: Tensor,
+ device: Device,
+}
+
+impl Cache {
+ pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?;
+ let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?;
+ Ok(Self {
+ masks: Arc::new(Mutex::new(HashMap::new())),
+ use_kv_cache,
+ kvs: Arc::new(Mutex::new(vec![None; cfg.n_layers])),
+ cos: freq_cis_real,
+ sin: freq_cis_imag,
+ device: vb.device().clone(),
+ })
+ }
+
+ fn mask(&self, t: usize) -> Result<Tensor> {
+ let mut masks = self.masks.lock().unwrap();
+ if let Some(mask) = masks.get(&t) {
+ Ok(mask.clone())
+ } else {
+ // TODO: If we support bool or u8 tensors, this would be better.
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
+ masks.insert(t, mask.clone());
+ Ok(mask)
+ }
+ }
+}
+
+fn silu(xs: &Tensor) -> Result<Tensor> {
+ xs / (xs.neg()?.exp()? + 1.0)?
+}
+
+fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
+ let weight = vb.get((size2, size1), "weight")?;
+ Ok(Linear::new(weight, None))
+}
+
+fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
+ let embeddings = vb.get((cfg.vocab_size, cfg.dim), "weight")?;
+ Ok(Embedding::new(embeddings, cfg.dim))
+}
+
+struct RmsNorm {
+ scale: Tensor,
+ eps: f64,
+}
+
+impl RmsNorm {
+ fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
+ let scale = vb.get(size, "weight")?;
+ Ok(Self { scale, eps })
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let (b_sz, seq_len, hidden_size) = x.dims3()?;
+ let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
+ let norm_x = norm_x.broadcast_as((b_sz, seq_len, hidden_size))?;
+ let x_normed = (x / (norm_x + self.eps)?.sqrt()?)?;
+ let size = self.scale.dims1()?;
+ let scale = self
+ .scale
+ .to_dtype(DType::F32)?
+ .broadcast_as((b_sz, seq_len, size))?;
+ let x = (scale * x_normed)?;
+ Ok(x)
+ }
+}
+
+struct CausalSelfAttention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ o_proj: Linear,
+ n_head: usize,
+ n_key_value_head: usize,
+ head_dim: usize,
+ cache: Cache,
+ max_seq_len: usize,
+}
+
+impl CausalSelfAttention {
+ fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (b_sz, _, seq_len, n_embd) = x.dims4()?;
+ let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
+ let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
+ let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd / 2))?;
+ let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd / 2))?;
+ let x0 = x.narrow(D::Minus1, 0, n_embd / 2)?;
+ let x1 = x.narrow(D::Minus1, n_embd / 2, n_embd / 2)?;
+ let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
+ let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
+ let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?;
+ Ok(rope)
+ }
+
+ fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
+ let (b_sz, seq_len, n_embd) = x.dims3()?;
+ let q = self.q_proj.forward(x)?;
+ let k = self.k_proj.forward(x)?;
+ let v = self.v_proj.forward(x)?;
+
+ let q = q.reshape((b_sz, seq_len, self.n_head, self.head_dim))?;
+ let k = k.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
+ let mut v = v.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
+
+ let q = self.apply_rotary_emb(&q, index_pos)?;
+ let mut k = self.apply_rotary_emb(&k, index_pos)?;
+
+ if self.cache.use_kv_cache {
+ let mut cache = self.cache.kvs.lock().unwrap();
+ if let Some((cache_k, cache_v)) = &cache[block_idx] {
+ k = Tensor::cat(&[cache_k, &k], 1)?.contiguous()?;
+ v = Tensor::cat(&[cache_v, &v], 1)?.contiguous()?;
+ }
+ cache[block_idx] = Some((k.clone(), v.clone()))
+ }
+
+ let k = self.repeat_kv(k)?;
+ let v = self.repeat_kv(v)?;
+
+ let q = q.transpose(1, 2)?.contiguous()?;
+ let k = k.transpose(1, 2)?.contiguous()?;
+ let v = v.transpose(1, 2)?.contiguous()?;
+
+ let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
+ let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
+ let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
+ let att = att.softmax(D::Minus1)?;
+ // Convert to contiguous as matmul doesn't support strided vs for now.
+ let y = att.matmul(&v.contiguous()?)?;
+ let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
+ let y = self.o_proj.forward(&y)?;
+ Ok(y)
+ }
+
+ fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
+ let n_rep = self.n_head / self.n_key_value_head;
+ if n_rep == 1 {
+ Ok(x)
+ } else {
+ let (b_sz, seq_len, n_kv_head, head_dim) = x.dims4()?;
+ let x = x
+ .unsqueeze(3)?
+ .expand((b_sz, seq_len, n_kv_head, n_rep, head_dim))?
+ .reshape((b_sz, seq_len, n_kv_head * n_rep, head_dim))?;
+ Ok(x)
+ }
+ }
+
+ fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let size_in = cfg.dim;
+ let size_q = (cfg.dim / cfg.n_heads) * cfg.n_heads;
+ let size_kv = (cfg.dim / cfg.n_heads) * cfg.n_kv_heads;
+ let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
+ let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
+ let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
+ let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ o_proj,
+ n_head: cfg.n_heads,
+ n_key_value_head: cfg.n_kv_heads,
+ head_dim: cfg.dim / cfg.n_heads,
+ cache: cache.clone(),
+ max_seq_len: cfg.seq_len,
+ })
+ }
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+struct Mlp {
+ c_fc1: Linear,
+ c_fc2: Linear,
+ c_proj: Linear,
+}
+
+impl Mlp {
+ fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self {
+ Self {
+ c_fc1,
+ c_fc2,
+ c_proj,
+ }
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
+ self.c_proj.forward(&x)
+ }
+
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let h_size = cfg.dim;
+ let i_size = cfg.hidden_dim;
+ let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
+ let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
+ let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
+ Ok(Self::new(c_fc1, c_fc2, c_proj))
+ }
+}
+
+struct Block {
+ rms_1: RmsNorm,
+ attn: CausalSelfAttention,
+ rms_2: RmsNorm,
+ mlp: Mlp,
+}
+
+impl Block {
+ fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self {
+ Self {
+ rms_1,
+ attn,
+ rms_2,
+ mlp,
+ }
+ }
+
+ fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
+ let residual = x;
+ let x = self.rms_1.forward(x)?;
+ let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
+ let residual = &x;
+ let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
+ Ok(x)
+ }
+
+ fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
+ let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
+ let input_layernorm = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("input_layernorm"))?;
+ let post_attention_layernorm =
+ RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("post_attention_layernorm"))?;
+ Ok(Self::new(
+ input_layernorm,
+ attn,
+ post_attention_layernorm,
+ mlp,
+ ))
+ }
+}
+
+pub struct Llama {
+ wte: Embedding,
+ blocks: Vec<Block>,
+ ln_f: RmsNorm,
+ lm_head: Linear,
+}
+
+impl Llama {
+ fn new(wte: Embedding, blocks: Vec<Block>, ln_f: RmsNorm, lm_head: Linear) -> Self {
+ Self {
+ wte,
+ blocks,
+ ln_f,
+ lm_head,
+ }
+ }
+
+ pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (_b_sz, seq_len) = x.dims2()?;
+ let mut x = self.wte.forward(x)?;
+ for (block_idx, block) in self.blocks.iter().enumerate() {
+ x = block.forward(&x, index_pos, block_idx)?;
+ }
+ let x = self.ln_f.forward(&x)?;
+ let x = x.i((.., seq_len - 1, ..))?;
+ let logits = self.lm_head.forward(&x)?;
+ logits.to_dtype(DType::F32)
+ }
+
+ pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
+ let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?;
+ let norm = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?;
+ let blocks: Vec<_> = (0..cfg.n_layers)
+ .map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap())
+ .collect();
+ Ok(Self::new(wte, blocks, norm, lm_head))
+ }
+}