summaryrefslogtreecommitdiff
path: root/candle-examples/examples/stable-diffusion
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-08-06 21:44:00 +0200
committerGitHub <noreply@github.com>2023-08-06 20:44:00 +0100
commit1c062bf06ba504a076b329c965c625be0ec67c1d (patch)
tree299cd6603c49726bc72596e416657d9f336ae82b /candle-examples/examples/stable-diffusion
parentd34039e35267b3f4de83770f8da4ea31491bcec5 (diff)
downloadcandle-1c062bf06ba504a076b329c965c625be0ec67c1d.tar.gz
candle-1c062bf06ba504a076b329c965c625be0ec67c1d.tar.bz2
candle-1c062bf06ba504a076b329c965c625be0ec67c1d.zip
Add the ddim scheduler. (#330)
Diffstat (limited to 'candle-examples/examples/stable-diffusion')
-rw-r--r--candle-examples/examples/stable-diffusion/ddim.rs181
-rw-r--r--candle-examples/examples/stable-diffusion/main.rs3
-rw-r--r--candle-examples/examples/stable-diffusion/schedulers.rs45
-rw-r--r--candle-examples/examples/stable-diffusion/stable_diffusion.rs212
-rw-r--r--candle-examples/examples/stable-diffusion/utils.rs4
5 files changed, 445 insertions, 0 deletions
diff --git a/candle-examples/examples/stable-diffusion/ddim.rs b/candle-examples/examples/stable-diffusion/ddim.rs
new file mode 100644
index 00000000..9afff5aa
--- /dev/null
+++ b/candle-examples/examples/stable-diffusion/ddim.rs
@@ -0,0 +1,181 @@
+#![allow(dead_code)]
+//! # Denoising Diffusion Implicit Models
+//!
+//! The Denoising Diffusion Implicit Models (DDIM) is a simple scheduler
+//! similar to Denoising Diffusion Probabilistic Models (DDPM). The DDPM
+//! generative process is the reverse of a Markovian process, DDIM generalizes
+//! this to non-Markovian guidance.
+//!
+//! Denoising Diffusion Implicit Models, J. Song et al, 2020.
+//! https://arxiv.org/abs/2010.02502
+use crate::schedulers::{betas_for_alpha_bar, BetaSchedule, PredictionType};
+use candle::{Result, Tensor};
+
+/// The configuration for the DDIM scheduler.
+#[derive(Debug, Clone, Copy)]
+pub struct DDIMSchedulerConfig {
+ /// The value of beta at the beginning of training.
+ pub beta_start: f64,
+ /// The value of beta at the end of training.
+ pub beta_end: f64,
+ /// How beta evolved during training.
+ pub beta_schedule: BetaSchedule,
+ /// The amount of noise to be added at each step.
+ pub eta: f64,
+ /// Adjust the indexes of the inference schedule by this value.
+ pub steps_offset: usize,
+ /// prediction type of the scheduler function, one of `epsilon` (predicting
+ /// the noise of the diffusion process), `sample` (directly predicting the noisy sample`)
+ /// or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
+ pub prediction_type: PredictionType,
+ /// number of diffusion steps used to train the model
+ pub train_timesteps: usize,
+}
+
+impl Default for DDIMSchedulerConfig {
+ fn default() -> Self {
+ Self {
+ beta_start: 0.00085f64,
+ beta_end: 0.012f64,
+ beta_schedule: BetaSchedule::ScaledLinear,
+ eta: 0.,
+ steps_offset: 1,
+ prediction_type: PredictionType::Epsilon,
+ train_timesteps: 1000,
+ }
+ }
+}
+
+/// The DDIM scheduler.
+#[derive(Debug, Clone)]
+pub struct DDIMScheduler {
+ timesteps: Vec<usize>,
+ alphas_cumprod: Vec<f64>,
+ step_ratio: usize,
+ init_noise_sigma: f64,
+ pub config: DDIMSchedulerConfig,
+}
+
+// clip_sample: False, set_alpha_to_one: False
+impl DDIMScheduler {
+ /// Creates a new DDIM scheduler given the number of steps to be
+ /// used for inference as well as the number of steps that was used
+ /// during training.
+ pub fn new(inference_steps: usize, config: DDIMSchedulerConfig) -> Result<Self> {
+ let step_ratio = config.train_timesteps / inference_steps;
+ let timesteps: Vec<usize> = (0..(inference_steps))
+ .map(|s| s * step_ratio + config.steps_offset)
+ .rev()
+ .collect();
+ let betas = match config.beta_schedule {
+ BetaSchedule::ScaledLinear => crate::utils::linspace(
+ config.beta_start.sqrt(),
+ config.beta_end.sqrt(),
+ config.train_timesteps,
+ )?
+ .sqr()?,
+ BetaSchedule::Linear => {
+ crate::utils::linspace(config.beta_start, config.beta_end, config.train_timesteps)?
+ }
+ BetaSchedule::SquaredcosCapV2 => betas_for_alpha_bar(config.train_timesteps, 0.999)?,
+ };
+ let betas = betas.to_vec1::<f64>()?;
+ let mut alphas_cumprod = Vec::with_capacity(betas.len());
+ for &beta in betas.iter() {
+ let alpha = 1.0 - beta;
+ alphas_cumprod.push(alpha * *alphas_cumprod.last().unwrap_or(&1f64))
+ }
+ Ok(Self {
+ alphas_cumprod,
+ timesteps,
+ step_ratio,
+ init_noise_sigma: 1.,
+ config,
+ })
+ }
+
+ pub fn timesteps(&self) -> &[usize] {
+ self.timesteps.as_slice()
+ }
+
+ /// Ensures interchangeability with schedulers that need to scale the denoising model input
+ /// depending on the current timestep.
+ pub fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Tensor {
+ sample
+ }
+
+ /// Performs a backward step during inference.
+ pub fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
+ let timestep = if timestep >= self.alphas_cumprod.len() {
+ timestep - 1
+ } else {
+ timestep
+ };
+ // https://github.com/huggingface/diffusers/blob/6e099e2c8ce4c4f5c7318e970a8c093dc5c7046e/src/diffusers/schedulers/scheduling_ddim.py#L195
+ let prev_timestep = if timestep > self.step_ratio {
+ timestep - self.step_ratio
+ } else {
+ 0
+ };
+
+ let alpha_prod_t = self.alphas_cumprod[timestep];
+ let alpha_prod_t_prev = self.alphas_cumprod[prev_timestep];
+ let beta_prod_t = 1. - alpha_prod_t;
+ let beta_prod_t_prev = 1. - alpha_prod_t_prev;
+
+ let (pred_original_sample, pred_epsilon) = match self.config.prediction_type {
+ PredictionType::Epsilon => {
+ let pred_original_sample = ((sample - (model_output * beta_prod_t.sqrt())?)?
+ * (1. / alpha_prod_t.sqrt()))?;
+ (pred_original_sample, model_output.clone())
+ }
+ PredictionType::VPrediction => {
+ let pred_original_sample =
+ ((sample * alpha_prod_t.sqrt())? - (model_output * beta_prod_t.sqrt())?)?;
+ let pred_epsilon =
+ ((model_output * alpha_prod_t.sqrt())? + (sample * beta_prod_t.sqrt())?)?;
+ (pred_original_sample, pred_epsilon)
+ }
+ PredictionType::Sample => {
+ let pred_original_sample = model_output.clone();
+ let pred_epsilon = ((sample - &pred_original_sample * alpha_prod_t.sqrt())?
+ * (1. / beta_prod_t.sqrt()))?;
+ (pred_original_sample, pred_epsilon)
+ }
+ };
+
+ let variance = (beta_prod_t_prev / beta_prod_t) * (1. - alpha_prod_t / alpha_prod_t_prev);
+ let std_dev_t = self.config.eta * variance.sqrt();
+
+ let pred_sample_direction =
+ (pred_epsilon * (1. - alpha_prod_t_prev - std_dev_t * std_dev_t).sqrt())?;
+ let prev_sample =
+ ((pred_original_sample * alpha_prod_t_prev.sqrt())? + pred_sample_direction)?;
+ if self.config.eta > 0. {
+ &prev_sample
+ + Tensor::randn(
+ 0f32,
+ std_dev_t as f32,
+ prev_sample.shape(),
+ prev_sample.device(),
+ )?
+ } else {
+ Ok(prev_sample)
+ }
+ }
+
+ pub fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> {
+ let timestep = if timestep >= self.alphas_cumprod.len() {
+ timestep - 1
+ } else {
+ timestep
+ };
+ let sqrt_alpha_prod = self.alphas_cumprod[timestep].sqrt();
+ let sqrt_one_minus_alpha_prod = (1.0 - self.alphas_cumprod[timestep]).sqrt();
+ (original * sqrt_alpha_prod)? + (noise * sqrt_one_minus_alpha_prod)?
+ }
+
+ pub fn init_noise_sigma(&self) -> f64 {
+ self.init_noise_sigma
+ }
+}
diff --git a/candle-examples/examples/stable-diffusion/main.rs b/candle-examples/examples/stable-diffusion/main.rs
index 31848f38..33a1dc71 100644
--- a/candle-examples/examples/stable-diffusion/main.rs
+++ b/candle-examples/examples/stable-diffusion/main.rs
@@ -3,8 +3,11 @@ extern crate intel_mkl_src;
mod attention;
mod clip;
+mod ddim;
mod embeddings;
mod resnet;
+mod schedulers;
+mod stable_diffusion;
mod unet_2d;
mod unet_2d_blocks;
mod utils;
diff --git a/candle-examples/examples/stable-diffusion/schedulers.rs b/candle-examples/examples/stable-diffusion/schedulers.rs
new file mode 100644
index 00000000..3f6a1d72
--- /dev/null
+++ b/candle-examples/examples/stable-diffusion/schedulers.rs
@@ -0,0 +1,45 @@
+#![allow(dead_code)]
+//! # Diffusion pipelines and models
+//!
+//! Noise schedulers can be used to set the trade-off between
+//! inference speed and quality.
+
+use candle::{Result, Tensor};
+
+/// This represents how beta ranges from its minimum value to the maximum
+/// during training.
+#[derive(Debug, Clone, Copy)]
+pub enum BetaSchedule {
+ /// Linear interpolation.
+ Linear,
+ /// Linear interpolation of the square root of beta.
+ ScaledLinear,
+ /// Glide cosine schedule
+ SquaredcosCapV2,
+}
+
+#[derive(Debug, Clone, Copy)]
+pub enum PredictionType {
+ Epsilon,
+ VPrediction,
+ Sample,
+}
+
+/// Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
+/// `(1-beta)` over time from `t = [0,1]`.
+///
+/// Contains a function `alpha_bar` that takes an argument `t` and transforms it to the cumulative product of `(1-beta)`
+/// up to that part of the diffusion process.
+pub(crate) fn betas_for_alpha_bar(num_diffusion_timesteps: usize, max_beta: f64) -> Result<Tensor> {
+ let alpha_bar = |time_step: usize| {
+ f64::cos((time_step as f64 + 0.008) / 1.008 * std::f64::consts::FRAC_PI_2).powi(2)
+ };
+ let mut betas = Vec::with_capacity(num_diffusion_timesteps);
+ for i in 0..num_diffusion_timesteps {
+ let t1 = i / num_diffusion_timesteps;
+ let t2 = (i + 1) / num_diffusion_timesteps;
+ betas.push((1.0 - alpha_bar(t2) / alpha_bar(t1)).min(max_beta));
+ }
+ let betas_len = betas.len();
+ Tensor::from_vec(betas, betas_len, &candle::Device::Cpu)
+}
diff --git a/candle-examples/examples/stable-diffusion/stable_diffusion.rs b/candle-examples/examples/stable-diffusion/stable_diffusion.rs
new file mode 100644
index 00000000..c250ed56
--- /dev/null
+++ b/candle-examples/examples/stable-diffusion/stable_diffusion.rs
@@ -0,0 +1,212 @@
+#![allow(dead_code)]
+use crate::schedulers::PredictionType;
+use crate::{clip, ddim, unet_2d, vae};
+use candle::{DType, Device, Result};
+use candle_nn as nn;
+
+#[derive(Clone, Debug)]
+pub struct StableDiffusionConfig {
+ pub width: usize,
+ pub height: usize,
+ pub clip: clip::Config,
+ autoencoder: vae::AutoEncoderKLConfig,
+ unet: unet_2d::UNet2DConditionModelConfig,
+ scheduler: ddim::DDIMSchedulerConfig,
+}
+
+impl StableDiffusionConfig {
+ pub fn v1_5(
+ sliced_attention_size: Option<usize>,
+ height: Option<usize>,
+ width: Option<usize>,
+ ) -> Self {
+ let bc = |out_channels, use_cross_attn, attention_head_dim| unet_2d::BlockConfig {
+ out_channels,
+ use_cross_attn,
+ attention_head_dim,
+ };
+ // https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/unet/config.json
+ let unet = unet_2d::UNet2DConditionModelConfig {
+ blocks: vec![
+ bc(320, true, 8),
+ bc(640, true, 8),
+ bc(1280, true, 8),
+ bc(1280, false, 8),
+ ],
+ center_input_sample: false,
+ cross_attention_dim: 768,
+ downsample_padding: 1,
+ flip_sin_to_cos: true,
+ freq_shift: 0.,
+ layers_per_block: 2,
+ mid_block_scale_factor: 1.,
+ norm_eps: 1e-5,
+ norm_num_groups: 32,
+ sliced_attention_size,
+ use_linear_projection: false,
+ };
+ let autoencoder = vae::AutoEncoderKLConfig {
+ block_out_channels: vec![128, 256, 512, 512],
+ layers_per_block: 2,
+ latent_channels: 4,
+ norm_num_groups: 32,
+ };
+ let height = if let Some(height) = height {
+ assert_eq!(height % 8, 0, "heigh has to be divisible by 8");
+ height
+ } else {
+ 512
+ };
+
+ let width = if let Some(width) = width {
+ assert_eq!(width % 8, 0, "width has to be divisible by 8");
+ width
+ } else {
+ 512
+ };
+
+ Self {
+ width,
+ height,
+ clip: clip::Config::v1_5(),
+ autoencoder,
+ scheduler: Default::default(),
+ unet,
+ }
+ }
+
+ fn v2_1_(
+ sliced_attention_size: Option<usize>,
+ height: Option<usize>,
+ width: Option<usize>,
+ prediction_type: PredictionType,
+ ) -> Self {
+ let bc = |out_channels, use_cross_attn, attention_head_dim| unet_2d::BlockConfig {
+ out_channels,
+ use_cross_attn,
+ attention_head_dim,
+ };
+ // https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/unet/config.json
+ let unet = unet_2d::UNet2DConditionModelConfig {
+ blocks: vec![
+ bc(320, true, 5),
+ bc(640, true, 10),
+ bc(1280, true, 20),
+ bc(1280, false, 20),
+ ],
+ center_input_sample: false,
+ cross_attention_dim: 1024,
+ downsample_padding: 1,
+ flip_sin_to_cos: true,
+ freq_shift: 0.,
+ layers_per_block: 2,
+ mid_block_scale_factor: 1.,
+ norm_eps: 1e-5,
+ norm_num_groups: 32,
+ sliced_attention_size,
+ use_linear_projection: true,
+ };
+ // https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/vae/config.json
+ let autoencoder = vae::AutoEncoderKLConfig {
+ block_out_channels: vec![128, 256, 512, 512],
+ layers_per_block: 2,
+ latent_channels: 4,
+ norm_num_groups: 32,
+ };
+ let scheduler = ddim::DDIMSchedulerConfig {
+ prediction_type,
+ ..Default::default()
+ };
+
+ let height = if let Some(height) = height {
+ assert_eq!(height % 8, 0, "heigh has to be divisible by 8");
+ height
+ } else {
+ 768
+ };
+
+ let width = if let Some(width) = width {
+ assert_eq!(width % 8, 0, "width has to be divisible by 8");
+ width
+ } else {
+ 768
+ };
+
+ Self {
+ width,
+ height,
+ clip: clip::Config::v2_1(),
+ autoencoder,
+ scheduler,
+ unet,
+ }
+ }
+
+ pub fn v2_1(
+ sliced_attention_size: Option<usize>,
+ height: Option<usize>,
+ width: Option<usize>,
+ ) -> Self {
+ // https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/scheduler/scheduler_config.json
+ Self::v2_1_(
+ sliced_attention_size,
+ height,
+ width,
+ PredictionType::VPrediction,
+ )
+ }
+
+ pub fn v2_1_inpaint(
+ sliced_attention_size: Option<usize>,
+ height: Option<usize>,
+ width: Option<usize>,
+ ) -> Self {
+ // https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/blob/main/scheduler/scheduler_config.json
+ // This uses a PNDM scheduler rather than DDIM but the biggest difference is the prediction
+ // type being "epsilon" by default and not "v_prediction".
+ Self::v2_1_(
+ sliced_attention_size,
+ height,
+ width,
+ PredictionType::Epsilon,
+ )
+ }
+
+ pub fn build_vae(&self, vae_weights: &str, device: &Device) -> Result<vae::AutoEncoderKL> {
+ let weights = unsafe { candle::safetensors::MmapedFile::new(vae_weights)? };
+ let weights = weights.deserialize()?;
+ let vs_ae = nn::VarBuilder::from_safetensors(vec![weights], DType::F32, device);
+ // https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/vae/config.json
+ let autoencoder = vae::AutoEncoderKL::new(vs_ae, 3, 3, self.autoencoder.clone())?;
+ Ok(autoencoder)
+ }
+
+ pub fn build_unet(
+ &self,
+ unet_weights: &str,
+ device: &Device,
+ in_channels: usize,
+ ) -> Result<unet_2d::UNet2DConditionModel> {
+ let weights = unsafe { candle::safetensors::MmapedFile::new(unet_weights)? };
+ let weights = weights.deserialize()?;
+ let vs_unet = nn::VarBuilder::from_safetensors(vec![weights], DType::F32, device);
+ let unet = unet_2d::UNet2DConditionModel::new(vs_unet, in_channels, 4, self.unet.clone())?;
+ Ok(unet)
+ }
+
+ pub fn build_scheduler(&self, n_steps: usize) -> Result<ddim::DDIMScheduler> {
+ ddim::DDIMScheduler::new(n_steps, self.scheduler)
+ }
+
+ pub fn build_clip_transformer(
+ &self,
+ clip_weights: &str,
+ device: &Device,
+ ) -> Result<clip::ClipTextTransformer> {
+ let weights = unsafe { candle::safetensors::MmapedFile::new(clip_weights)? };
+ let weights = weights.deserialize()?;
+ let vs = nn::VarBuilder::from_safetensors(vec![weights], DType::F32, device);
+ let text_model = clip::ClipTextTransformer::new(vs, &self.clip)?;
+ Ok(text_model)
+ }
+}
diff --git a/candle-examples/examples/stable-diffusion/utils.rs b/candle-examples/examples/stable-diffusion/utils.rs
index aa49e560..50ee48e9 100644
--- a/candle-examples/examples/stable-diffusion/utils.rs
+++ b/candle-examples/examples/stable-diffusion/utils.rs
@@ -15,3 +15,7 @@ pub fn pad(_: &Tensor) -> Result<Tensor> {
pub fn upsample_nearest2d(_: &Tensor) -> Result<Tensor> {
todo!()
}
+
+pub fn linspace(_: f64, _: f64, _: usize) -> Result<Tensor> {
+ todo!()
+}