diff options
author | Juarez Bochi <juarez.bochi@grammarly.com> | 2023-09-15 13:05:12 -0700 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-09-15 22:05:12 +0200 |
commit | 3e49f8fce52c6b8f361bfd37d541a99b5e1f8c63 (patch) | |
tree | fe8214d4cba3974bcf085bb8e4f758c74aa13136 /candle-examples/examples/t5/main.rs | |
parent | c2007ac88fb0dd6fa6f82f6624693a0095db2edb (diff) | |
download | candle-3e49f8fce52c6b8f361bfd37d541a99b5e1f8c63.tar.gz candle-3e49f8fce52c6b8f361bfd37d541a99b5e1f8c63.tar.bz2 candle-3e49f8fce52c6b8f361bfd37d541a99b5e1f8c63.zip |
Implement T5 decoding (#864)
* Load t5 decoder
* Run enc, dec, and lm head, but no cross attn
* Cross-attention over key_value_states
* New arg for decoder input ids
* Add mask, don't forward position biases through decoder
* Update t5 examples
* Clippy + rustfmt
Diffstat (limited to 'candle-examples/examples/t5/main.rs')
-rw-r--r-- | candle-examples/examples/t5/main.rs | 104 |
1 files changed, 85 insertions, 19 deletions
diff --git a/candle-examples/examples/t5/main.rs b/candle-examples/examples/t5/main.rs index 1e182974..00291609 100644 --- a/candle-examples/examples/t5/main.rs +++ b/candle-examples/examples/t5/main.rs @@ -3,18 +3,22 @@ extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; +use std::io::Write; +use std::path::PathBuf; + use candle_transformers::models::t5; use anyhow::{anyhow, Error as E, Result}; -use candle::{DType, Tensor}; +use candle::{DType, Device, Tensor}; use candle_nn::VarBuilder; +use candle_transformers::generation::LogitsProcessor; use clap::Parser; use hf_hub::{api::sync::Api, Cache, Repo, RepoType}; use tokenizers::Tokenizer; const DTYPE: DType = DType::F32; -#[derive(Parser, Debug)] +#[derive(Parser, Debug, Clone)] #[command(author, version, about, long_about = None)] struct Args { /// Run on CPU rather than on GPU. @@ -36,7 +40,11 @@ struct Args { #[arg(long)] revision: Option<String>, - /// Compute embeddings for this prompt, otherwise compute sentence similarities. + /// Enable decoding. + #[arg(long)] + decode: bool, + + /// Use this prompt, otherwise compute sentence similarities. #[arg(long)] prompt: Option<String>, @@ -49,12 +57,18 @@ struct Args { normalize_embeddings: bool, } -impl Args { - fn build_model_and_tokenizer(&self) -> Result<(t5::T5EncoderModel, Tokenizer)> { - let device = candle_examples::device(self.cpu)?; +struct T5ModelBuilder { + device: Device, + config: t5::Config, + weights_filename: PathBuf, +} + +impl T5ModelBuilder { + pub fn load(args: &Args) -> Result<(Self, Tokenizer)> { + let device = candle_examples::device(args.cpu)?; let default_model = "t5-small".to_string(); let default_revision = "refs/pr/15".to_string(); - let (model_id, revision) = match (self.model_id.to_owned(), self.revision.to_owned()) { + let (model_id, revision) = match (args.model_id.to_owned(), args.revision.to_owned()) { (Some(model_id), Some(revision)) => (model_id, revision), (Some(model_id), None) => (model_id, "main".to_string()), (None, Some(revision)) => (default_model, revision), @@ -62,7 +76,7 @@ impl Args { }; let repo = Repo::with_revision(model_id, RepoType::Model, revision); - let (config_filename, tokenizer_filename, weights_filename) = if self.offline { + let (config_filename, tokenizer_filename, weights_filename) = if args.offline { let cache = Cache::default().repo(repo); ( cache @@ -87,18 +101,36 @@ impl Args { let config = std::fs::read_to_string(config_filename)?; let config: t5::Config = serde_json::from_str(&config)?; let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; + Ok(( + Self { + device, + config, + weights_filename, + }, + tokenizer, + )) + } - let weights = unsafe { candle::safetensors::MmapedFile::new(weights_filename)? }; + pub fn build_encoder(&self) -> Result<t5::T5EncoderModel> { + let weights = + unsafe { candle::safetensors::MmapedFile::new(self.weights_filename.clone())? }; let weights = weights.deserialize()?; - let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &device); - let model = t5::T5EncoderModel::load(vb, &config)?; - Ok((model, tokenizer)) + let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &self.device); + Ok(t5::T5EncoderModel::load(vb, &self.config)?) + } + + pub fn build_conditional_generation(&self) -> Result<t5::T5ForConditionalGeneration> { + let weights = + unsafe { candle::safetensors::MmapedFile::new(self.weights_filename.clone())? }; + let weights = weights.deserialize()?; + let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &self.device); + Ok(t5::T5ForConditionalGeneration::load(vb, &self.config)?) } } fn main() -> Result<()> { let args = Args::parse(); - let (model, mut tokenizer) = args.build_model_and_tokenizer()?; + let (builder, mut tokenizer) = T5ModelBuilder::load(&args)?; let tokenizer = tokenizer .with_padding(None) .with_truncation(None) @@ -110,17 +142,51 @@ fn main() -> Result<()> { .map_err(E::msg)? .get_ids() .to_vec(); - let token_ids = Tensor::new(&tokens[..], model.device())?.unsqueeze(0)?; - for idx in 0..args.n { + let input_token_ids = Tensor::new(&tokens[..], &builder.device)?.unsqueeze(0)?; + if !args.decode { + let model = builder.build_encoder()?; + for idx in 0..args.n { + let start = std::time::Instant::now(); + let ys = model.forward(&input_token_ids)?; + if idx == 0 { + println!("{ys}"); + } + println!("Took {:?}", start.elapsed()); + } + } else { + let model = builder.build_conditional_generation()?; + let mut output_token_ids = [builder.config.pad_token_id as u32].to_vec(); + let mut logits_processor = LogitsProcessor::new(299792458, None, None); let start = std::time::Instant::now(); - let ys = model.forward(&token_ids)?; - if idx == 0 { - println!("{ys}"); + + for _index in 0.. { + if output_token_ids.len() > 512 { + break; + } + let decoder_token_ids = + Tensor::new(&output_token_ids[..], &builder.device)?.unsqueeze(0)?; + let logits = model.forward(&input_token_ids, &decoder_token_ids)?; + let next_token_id = logits_processor.sample(&logits.flatten_to(1)?)?; + if (next_token_id as usize) == builder.config.eos_token_id { + break; + } + output_token_ids.push(next_token_id); + if let Some(text) = tokenizer.id_to_token(next_token_id) { + let text = text.replace('▁', " ").replace("<0x0A>", "\n"); + print!("{text}"); + std::io::stdout().flush()?; + } } - println!("Took {:?}", start.elapsed()); + let dt = start.elapsed(); + println!( + "\n{} tokens generated ({:.2} token/s)\n", + tokens.len(), + tokens.len() as f64 / dt.as_secs_f64(), + ); } } None => { + let model = builder.build_encoder()?; let sentences = [ "The cat sits outside", "A man is playing guitar", |