diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-08-21 18:40:09 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-08-21 18:40:09 +0100 |
commit | de50e66af1a04358b420dd45c585965637bc52e0 (patch) | |
tree | 091c65c0d575f4784776e0a59db03a2bf81c8f0b /candle-examples/examples/yolo-v8/main.rs | |
parent | cc2d6cf2e020a5fc707e033765d11a2034b3bea4 (diff) | |
download | candle-de50e66af1a04358b420dd45c585965637bc52e0.tar.gz candle-de50e66af1a04358b420dd45c585965637bc52e0.tar.bz2 candle-de50e66af1a04358b420dd45c585965637bc52e0.zip |
Add yolo v8 as an example (#541)
* Sketching yolo-v8.
* Get the model to load.
* yolo-v8 forward pass.
* Complete(?) the forward pass.
* Fix some shape issues.
* Add the missing padding.
* Process the predictions.
Diffstat (limited to 'candle-examples/examples/yolo-v8/main.rs')
-rw-r--r-- | candle-examples/examples/yolo-v8/main.rs | 779 |
1 files changed, 779 insertions, 0 deletions
diff --git a/candle-examples/examples/yolo-v8/main.rs b/candle-examples/examples/yolo-v8/main.rs new file mode 100644 index 00000000..3ab7414b --- /dev/null +++ b/candle-examples/examples/yolo-v8/main.rs @@ -0,0 +1,779 @@ +#![allow(dead_code)] + +#[cfg(feature = "mkl")] +extern crate intel_mkl_src; + +#[cfg(feature = "accelerate")] +extern crate accelerate_src; + +mod coco_classes; + +use candle::{DType, Device, IndexOp, Result, Tensor, D}; +use candle_nn::{batch_norm, conv2d_no_bias, BatchNorm, Conv2d, Conv2dConfig, Module, VarBuilder}; +use clap::Parser; +use image::{DynamicImage, ImageBuffer}; + +const CONFIDENCE_THRESHOLD: f32 = 0.5; +const NMS_THRESHOLD: f32 = 0.4; + +// Model architecture from https://github.com/ultralytics/ultralytics/issues/189 +// https://github.com/tinygrad/tinygrad/blob/master/examples/yolov8.py + +#[derive(Clone, Copy, PartialEq, Debug)] +struct Multiples { + depth: f64, + width: f64, + ratio: f64, +} + +impl Multiples { + fn n() -> Self { + Self { + depth: 0.33, + width: 0.25, + ratio: 2.0, + } + } + fn s() -> Self { + Self { + depth: 0.33, + width: 0.50, + ratio: 2.0, + } + } + fn m() -> Self { + Self { + depth: 0.67, + width: 0.75, + ratio: 1.5, + } + } + fn l() -> Self { + Self { + depth: 1.00, + width: 1.00, + ratio: 1.0, + } + } + fn x() -> Self { + Self { + depth: 1.00, + width: 1.25, + ratio: 1.0, + } + } + + fn filters(&self) -> (usize, usize, usize) { + let f1 = (256. * self.width) as usize; + let f2 = (512. * self.width) as usize; + let f3 = (512. * self.width * self.ratio) as usize; + (f1, f2, f3) + } +} + +#[derive(Debug)] +struct Upsample { + scale_factor: usize, +} + +impl Upsample { + fn new(scale_factor: usize) -> Result<Self> { + Ok(Upsample { scale_factor }) + } +} + +impl Module for Upsample { + fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> { + let (_b_size, _channels, h, w) = xs.dims4()?; + xs.upsample_nearest2d(self.scale_factor * h, self.scale_factor * w) + } +} + +#[derive(Debug)] +struct ConvBlock { + conv: Conv2d, + bn: BatchNorm, +} + +impl ConvBlock { + fn load( + vb: VarBuilder, + c1: usize, + c2: usize, + k: usize, + stride: usize, + padding: Option<usize>, + ) -> Result<Self> { + let padding = padding.unwrap_or(k / 2); + let cfg = Conv2dConfig { padding, stride }; + let conv = conv2d_no_bias(c1, c2, k, cfg, vb.pp("conv"))?; + let bn = batch_norm(c2, 1e-3, vb.pp("bn"))?; + Ok(Self { conv, bn }) + } +} + +impl Module for ConvBlock { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let xs = self.conv.forward(xs)?; + let xs = self.bn.forward(&xs)?; + candle_nn::ops::silu(&xs) + } +} + +#[derive(Debug)] +struct Bottleneck { + cv1: ConvBlock, + cv2: ConvBlock, + residual: bool, +} + +impl Bottleneck { + fn load(vb: VarBuilder, c1: usize, c2: usize, shortcut: bool) -> Result<Self> { + let channel_factor = 1.; + let c_ = (c2 as f64 * channel_factor) as usize; + let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 3, 1, None)?; + let cv2 = ConvBlock::load(vb.pp("cv2"), c_, c2, 3, 1, None)?; + let residual = c1 == c2 && shortcut; + Ok(Self { cv1, cv2, residual }) + } +} + +impl Module for Bottleneck { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let ys = self.cv2.forward(&self.cv1.forward(xs)?)?; + if self.residual { + xs + ys + } else { + Ok(ys) + } + } +} + +#[derive(Debug)] +struct C2f { + cv1: ConvBlock, + cv2: ConvBlock, + bottleneck: Vec<Bottleneck>, + c: usize, +} + +impl C2f { + fn load(vb: VarBuilder, c1: usize, c2: usize, n: usize, shortcut: bool) -> Result<Self> { + let c = (c2 as f64 * 0.5) as usize; + let cv1 = ConvBlock::load(vb.pp("cv1"), c1, 2 * c, 1, 1, None)?; + let cv2 = ConvBlock::load(vb.pp("cv2"), (2 + n) * c, c2, 1, 1, None)?; + let mut bottleneck = Vec::with_capacity(n); + for idx in 0..n { + let b = Bottleneck::load(vb.pp(&format!("bottleneck.{idx}")), c, c, shortcut)?; + bottleneck.push(b) + } + Ok(Self { + cv1, + cv2, + bottleneck, + c, + }) + } +} + +impl Module for C2f { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let ys = self.cv1.forward(xs)?; + let ys_1 = ys.dim(1)?; + let mut ys = vec![ys.i((.., 0..ys_1 / 2))?, ys.i((.., ys_1 / 2..))?]; + for m in self.bottleneck.iter() { + ys.push(m.forward(ys.last().unwrap())?) + } + let zs = Tensor::cat(ys.as_slice(), 1)?; + self.cv2.forward(&zs) + } +} + +#[derive(Debug)] +struct Sppf { + cv1: ConvBlock, + cv2: ConvBlock, + k: usize, +} + +impl Sppf { + fn load(vb: VarBuilder, c1: usize, c2: usize, k: usize) -> Result<Self> { + let c_ = c1 / 2; + let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 1, 1, None)?; + let cv2 = ConvBlock::load(vb.pp("cv2"), c_ * 4, c2, 1, 1, None)?; + Ok(Self { cv1, cv2, k }) + } +} + +impl Module for Sppf { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (_, _, _, _) = xs.dims4()?; + let xs = self.cv1.forward(xs)?; + let xs2 = xs + .pad_with_zeros(2, self.k / 2, self.k / 2)? + .pad_with_zeros(3, self.k / 2, self.k / 2)? + .max_pool2d((self.k, self.k), (1, 1))?; + let xs3 = xs2 + .pad_with_zeros(2, self.k / 2, self.k / 2)? + .pad_with_zeros(3, self.k / 2, self.k / 2)? + .max_pool2d((self.k, self.k), (1, 1))?; + let xs4 = xs3 + .pad_with_zeros(2, self.k / 2, self.k / 2)? + .pad_with_zeros(3, self.k / 2, self.k / 2)? + .max_pool2d((self.k, self.k), (1, 1))?; + self.cv2.forward(&Tensor::cat(&[&xs, &xs2, &xs3, &xs4], 1)?) + } +} + +#[derive(Debug)] +struct Dfl { + conv: Conv2d, + num_classes: usize, +} + +impl Dfl { + fn load(vb: VarBuilder, num_classes: usize) -> Result<Self> { + let conv = conv2d_no_bias(num_classes, 1, 1, Default::default(), vb.pp("conv"))?; + Ok(Self { conv, num_classes }) + } +} + +impl Module for Dfl { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (b_sz, _channels, anchors) = xs.dims3()?; + let xs = xs + .reshape((b_sz, 4, self.num_classes, anchors))? + .transpose(2, 1)?; + let xs = candle_nn::ops::softmax(&xs, 1)?; + self.conv.forward(&xs)?.reshape((b_sz, 4, anchors)) + } +} + +#[derive(Debug)] +struct DarkNet { + b1_0: ConvBlock, + b1_1: ConvBlock, + b2_0: C2f, + b2_1: ConvBlock, + b2_2: C2f, + b3_0: ConvBlock, + b3_1: C2f, + b4_0: ConvBlock, + b4_1: C2f, + b5: Sppf, +} + +impl DarkNet { + fn load(vb: VarBuilder, m: Multiples) -> Result<Self> { + let (w, r, d) = (m.width, m.ratio, m.depth); + let b1_0 = ConvBlock::load(vb.pp("b1.0"), 3, (64. * w) as usize, 3, 2, Some(1))?; + let b1_1 = ConvBlock::load( + vb.pp("b1.1"), + (64. * w) as usize, + (128. * w) as usize, + 3, + 2, + Some(1), + )?; + let b2_0 = C2f::load( + vb.pp("b2.0"), + (128. * w) as usize, + (128. * w) as usize, + (3. * d).round() as usize, + true, + )?; + let b2_1 = ConvBlock::load( + vb.pp("b2.1"), + (128. * w) as usize, + (256. * w) as usize, + 3, + 2, + Some(1), + )?; + let b2_2 = C2f::load( + vb.pp("b2.2"), + (256. * w) as usize, + (256. * w) as usize, + (6. * d).round() as usize, + true, + )?; + let b3_0 = ConvBlock::load( + vb.pp("b3.0"), + (256. * w) as usize, + (512. * w) as usize, + 3, + 2, + Some(1), + )?; + let b3_1 = C2f::load( + vb.pp("b3.1"), + (512. * w) as usize, + (512. * w) as usize, + (6. * d).round() as usize, + true, + )?; + let b4_0 = ConvBlock::load( + vb.pp("b4.0"), + (512. * w) as usize, + (512. * w * r) as usize, + 3, + 2, + Some(1), + )?; + let b4_1 = C2f::load( + vb.pp("b4.1"), + (512. * w * r) as usize, + (512. * w * r) as usize, + (3. * d).round() as usize, + true, + )?; + let b5 = Sppf::load( + vb.pp("b5.0"), + (512. * w * r) as usize, + (512. * w * r) as usize, + 5, + )?; + Ok(Self { + b1_0, + b1_1, + b2_0, + b2_1, + b2_2, + b3_0, + b3_1, + b4_0, + b4_1, + b5, + }) + } + + fn forward(&self, xs: &Tensor) -> Result<(Tensor, Tensor, Tensor)> { + let x1 = self.b1_1.forward(&self.b1_0.forward(xs)?)?; + let x2 = self.b2_1.forward(&self.b2_0.forward(&x1)?)?; + let x3 = self.b3_1.forward(&self.b3_0.forward(&x2)?)?; + let x4 = self.b4_1.forward(&self.b4_0.forward(&x3)?)?; + let x5 = self.b5.forward(&x4)?; + Ok((x2, x3, x5)) + } +} + +#[derive(Debug)] +struct YoloV8Neck { + up: Upsample, + n1: C2f, + n2: C2f, + n3: ConvBlock, + n4: C2f, + n5: ConvBlock, + n6: C2f, +} + +impl YoloV8Neck { + fn load(vb: VarBuilder, m: Multiples) -> Result<Self> { + let up = Upsample::new(2)?; + let (w, r, d) = (m.width, m.ratio, m.depth); + let n = (3. * d).round() as usize; + let n1 = C2f::load( + vb.pp("n1"), + (512. * w * (1. + r)) as usize, + (512. * w) as usize, + n, + false, + )?; + let n2 = C2f::load( + vb.pp("n2"), + (768. * w) as usize, + (256. * w) as usize, + n, + false, + )?; + let n3 = ConvBlock::load( + vb.pp("n3"), + (256. * w) as usize, + (256. * w) as usize, + 3, + 2, + Some(1), + )?; + let n4 = C2f::load( + vb.pp("n4"), + (768. * w) as usize, + (512. * w) as usize, + n, + false, + )?; + let n5 = ConvBlock::load( + vb.pp("n5"), + (512. * w) as usize, + (512. * w) as usize, + 3, + 2, + Some(1), + )?; + let n6 = C2f::load( + vb.pp("n6"), + (512. * w * (1. + r)) as usize, + (512. * w * r) as usize, + n, + false, + )?; + Ok(Self { + up, + n1, + n2, + n3, + n4, + n5, + n6, + }) + } + + fn forward(&self, p3: &Tensor, p4: &Tensor, p5: &Tensor) -> Result<(Tensor, Tensor, Tensor)> { + let x = self + .n1 + .forward(&Tensor::cat(&[&self.up.forward(p5)?, p4], 1)?)?; + let head_1 = self + .n2 + .forward(&Tensor::cat(&[&self.up.forward(&x)?, p3], 1)?)?; + let head_2 = self + .n4 + .forward(&Tensor::cat(&[&self.n3.forward(&head_1)?, &x], 1)?)?; + let head_3 = self + .n6 + .forward(&Tensor::cat(&[&self.n5.forward(&head_2)?, p5], 1)?)?; + Ok((head_1, head_2, head_3)) + } +} + +#[derive(Debug)] +struct DetectionHead { + dfl: Dfl, + cv2: [(ConvBlock, ConvBlock, Conv2d); 3], + cv3: [(ConvBlock, ConvBlock, Conv2d); 3], + ch: usize, + no: usize, +} + +fn make_anchors( + xs0: &Tensor, + xs1: &Tensor, + xs2: &Tensor, + (s0, s1, s2): (usize, usize, usize), + grid_cell_offset: f64, +) -> Result<(Tensor, Tensor)> { + let dev = xs0.device(); + let mut anchor_points = vec![]; + let mut stride_tensor = vec![]; + for (xs, stride) in [(xs0, s0), (xs1, s1), (xs2, s2)] { + // xs is only used to extract the h and w dimensions. + let (_, _, h, w) = xs.dims4()?; + let sx = (Tensor::arange(0, w as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?; + let sy = (Tensor::arange(0, h as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?; + let sx = sx + .reshape((1, sx.elem_count()))? + .repeat((h, 1))? + .flatten_all()?; + let sy = sy + .reshape((sy.elem_count(), 1))? + .repeat((1, w))? + .flatten_all()?; + anchor_points.push(Tensor::stack(&[&sx, &sy], D::Minus1)?); + stride_tensor.push((Tensor::ones(h * w, DType::F32, dev)? * stride as f64)?); + } + let anchor_points = Tensor::cat(anchor_points.as_slice(), 0)?; + let stride_tensor = Tensor::cat(stride_tensor.as_slice(), 0)?.unsqueeze(1)?; + Ok((anchor_points, stride_tensor)) +} +fn dist2bbox(distance: &Tensor, anchor_points: &Tensor) -> Result<Tensor> { + let chunks = distance.chunk(2, 1)?; + let lt = &chunks[0]; + let rb = &chunks[1]; + let x1y1 = anchor_points.sub(lt)?; + let x2y2 = anchor_points.add(rb)?; + let c_xy = ((&x1y1 + &x2y2)? * 0.5)?; + let wh = (&x2y2 - &x1y1)?; + Tensor::cat(&[c_xy, wh], 1) +} + +impl DetectionHead { + fn load(vb: VarBuilder, nc: usize, filters: (usize, usize, usize)) -> Result<Self> { + let ch = 16; + let dfl = Dfl::load(vb.pp("dfl"), ch)?; + let c1 = usize::max(filters.0, nc); + let c2 = usize::max(filters.0 / 4, ch * 4); + let cv3 = [ + Self::load_cv3(vb.pp("cv3.0"), c1, nc, filters.0)?, + Self::load_cv3(vb.pp("cv3.1"), c1, nc, filters.1)?, + Self::load_cv3(vb.pp("cv3.2"), c1, nc, filters.2)?, + ]; + let cv2 = [ + Self::load_cv2(vb.pp("cv2.0"), c2, ch, filters.0)?, + Self::load_cv2(vb.pp("cv2.1"), c2, ch, filters.1)?, + Self::load_cv2(vb.pp("cv2.2"), c2, ch, filters.2)?, + ]; + let no = nc + ch * 4; + Ok(Self { + dfl, + cv2, + cv3, + ch, + no, + }) + } + + fn load_cv3( + vb: VarBuilder, + c1: usize, + nc: usize, + filter: usize, + ) -> Result<(ConvBlock, ConvBlock, Conv2d)> { + let block0 = ConvBlock::load(vb.pp("0"), filter, c1, 3, 1, None)?; + let block1 = ConvBlock::load(vb.pp("1"), c1, c1, 3, 1, None)?; + let conv = conv2d_no_bias(c1, nc, 1, Default::default(), vb.pp("2"))?; + Ok((block0, block1, conv)) + } + + fn load_cv2( + vb: VarBuilder, + c2: usize, + ch: usize, + filter: usize, + ) -> Result<(ConvBlock, ConvBlock, Conv2d)> { + let block0 = ConvBlock::load(vb.pp("0"), filter, c2, 3, 1, None)?; + let block1 = ConvBlock::load(vb.pp("1"), c2, c2, 3, 1, None)?; + let conv = conv2d_no_bias(c2, 4 * ch, 1, Default::default(), vb.pp("2"))?; + Ok((block0, block1, conv)) + } + + fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<Tensor> { + let forward_cv = |xs, i: usize| { + let xs_2 = self.cv2[i].0.forward(xs)?; + let xs_2 = self.cv2[i].1.forward(&xs_2)?; + let xs_2 = self.cv2[i].2.forward(&xs_2)?; + + let xs_3 = self.cv3[i].0.forward(xs)?; + let xs_3 = self.cv3[i].1.forward(&xs_3)?; + let xs_3 = self.cv3[i].2.forward(&xs_3)?; + Tensor::cat(&[&xs_2, &xs_3], 1) + }; + let xs0 = forward_cv(xs0, 0)?; + let xs1 = forward_cv(xs1, 1)?; + let xs2 = forward_cv(xs2, 2)?; + + let (anchors, strides) = make_anchors(&xs0, &xs1, &xs2, (8, 16, 32), 0.5)?; + let anchors = anchors.transpose(0, 1)?; + let strides = strides.transpose(0, 1)?; + + let reshape = |xs: &Tensor| { + let d = xs.dim(0)?; + let el = xs.elem_count(); + xs.reshape((d, self.no, el / (d * self.no))) + }; + let ys0 = reshape(&xs0)?; + let ys1 = reshape(&xs1)?; + let ys2 = reshape(&xs2)?; + + let x_cat = Tensor::cat(&[ys0, ys1, ys2], 2)?; + let box_ = x_cat.i((.., ..self.ch * 4))?; + let cls = x_cat.i((.., self.ch * 4..))?; + + let dbox = dist2bbox(&self.dfl.forward(&box_)?, &anchors.unsqueeze(0)?)?; + let dbox = dbox.broadcast_mul(&strides)?; + + Tensor::cat(&[dbox, candle_nn::ops::sigmoid(&cls)?], 1) + } +} + +#[derive(Debug)] +struct YoloV8 { + net: DarkNet, + fpn: YoloV8Neck, + head: DetectionHead, +} + +impl YoloV8 { + fn load(vb: VarBuilder, m: Multiples, num_classes: usize) -> Result<Self> { + let net = DarkNet::load(vb.pp("net"), m)?; + let fpn = YoloV8Neck::load(vb.pp("fpn"), m)?; + let head = DetectionHead::load(vb.pp("head"), num_classes, m.filters())?; + Ok(Self { net, fpn, head }) + } +} + +impl Module for YoloV8 { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (xs1, xs2, xs3) = self.net.forward(xs)?; + let (xs1, xs2, xs3) = self.fpn.forward(&xs1, &xs2, &xs3)?; + self.head.forward(&xs1, &xs2, &xs3) + } +} + +#[derive(Debug, Clone, Copy)] +struct Bbox { + xmin: f32, + ymin: f32, + xmax: f32, + ymax: f32, + confidence: f32, +} + +// Intersection over union of two bounding boxes. +fn iou(b1: &Bbox, b2: &Bbox) -> f32 { + let b1_area = (b1.xmax - b1.xmin + 1.) * (b1.ymax - b1.ymin + 1.); + let b2_area = (b2.xmax - b2.xmin + 1.) * (b2.ymax - b2.ymin + 1.); + let i_xmin = b1.xmin.max(b2.xmin); + let i_xmax = b1.xmax.min(b2.xmax); + let i_ymin = b1.ymin.max(b2.ymin); + let i_ymax = b1.ymax.min(b2.ymax); + let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.); + i_area / (b1_area + b2_area - i_area) +} + +// Assumes x1 <= x2 and y1 <= y2 +pub fn draw_rect( + img: &mut ImageBuffer<image::Rgb<u8>, Vec<u8>>, + x1: u32, + x2: u32, + y1: u32, + y2: u32, +) { + for x in x1..=x2 { + let pixel = img.get_pixel_mut(x, y1); + *pixel = image::Rgb([255, 0, 0]); + let pixel = img.get_pixel_mut(x, y2); + *pixel = image::Rgb([255, 0, 0]); + } + for y in y1..=y2 { + let pixel = img.get_pixel_mut(x1, y); + *pixel = image::Rgb([255, 0, 0]); + let pixel = img.get_pixel_mut(x2, y); + *pixel = image::Rgb([255, 0, 0]); + } +} + +pub fn report(pred: &Tensor, img: DynamicImage, w: usize, h: usize) -> Result<DynamicImage> { + let (npreds, pred_size) = pred.dims2()?; + let nclasses = pred_size - 5; + // The bounding boxes grouped by (maximum) class index. + let mut bboxes: Vec<Vec<Bbox>> = (0..nclasses).map(|_| vec![]).collect(); + // Extract the bounding boxes for which confidence is above the threshold. + for index in 0..npreds { + let pred = Vec::<f32>::try_from(pred.get(index)?)?; + let confidence = pred[4]; + if confidence > CONFIDENCE_THRESHOLD { + let mut class_index = 0; + for i in 0..nclasses { + if pred[5 + i] > pred[5 + class_index] { + class_index = i + } + } + if pred[class_index + 5] > 0. { + let bbox = Bbox { + xmin: pred[0] - pred[2] / 2., + ymin: pred[1] - pred[3] / 2., + xmax: pred[0] + pred[2] / 2., + ymax: pred[1] + pred[3] / 2., + confidence, + }; + bboxes[class_index].push(bbox) + } + } + } + // Perform non-maximum suppression. + for bboxes_for_class in bboxes.iter_mut() { + bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap()); + let mut current_index = 0; + for index in 0..bboxes_for_class.len() { + let mut drop = false; + for prev_index in 0..current_index { + let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]); + if iou > NMS_THRESHOLD { + drop = true; + break; + } + } + if !drop { + bboxes_for_class.swap(current_index, index); + current_index += 1; + } + } + bboxes_for_class.truncate(current_index); + } + // Annotate the original image and print boxes information. + let (initial_h, initial_w) = (img.height(), img.width()); + let w_ratio = initial_w as f32 / w as f32; + let h_ratio = initial_h as f32 / h as f32; + let mut img = img.to_rgb8(); + for (class_index, bboxes_for_class) in bboxes.iter().enumerate() { + for b in bboxes_for_class.iter() { + println!("{}: {:?}", coco_classes::NAMES[class_index], b); + let xmin = ((b.xmin * w_ratio) as u32).clamp(0, initial_w - 1); + let ymin = ((b.ymin * h_ratio) as u32).clamp(0, initial_h - 1); + let xmax = ((b.xmax * w_ratio) as u32).clamp(0, initial_w - 1); + let ymax = ((b.ymax * h_ratio) as u32).clamp(0, initial_h - 1); + draw_rect(&mut img, xmin, xmax, ymin, ymax); + } + } + Ok(DynamicImage::ImageRgb8(img)) +} + +#[derive(Parser, Debug)] +#[command(author, version, about, long_about = None)] +struct Args { + /// Model weights, in safetensors format. + #[arg(long)] + model: Option<String>, + + images: Vec<String>, +} + +impl Args { + fn model(&self) -> anyhow::Result<std::path::PathBuf> { + let path = match &self.model { + Some(model) => std::path::PathBuf::from(model), + None => { + let api = hf_hub::api::sync::Api::new()?; + let api = api.model("lmz/candle-yolo-v3".to_string()); + api.get("yolo-v3.safetensors")? + } + }; + Ok(path) + } +} + +pub fn main() -> anyhow::Result<()> { + let args = Args::parse(); + + // Create the model and load the weights from the file. + let model = args.model()?; + let weights = unsafe { candle::safetensors::MmapedFile::new(model)? }; + let weights = weights.deserialize()?; + let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &Device::Cpu); + let multiples = Multiples::s(); + let model = YoloV8::load(vb, multiples, /* num_classes=*/ 80)?; + println!("model loaded"); + for image_name in args.images.iter() { + println!("processing {image_name}"); + let mut image_name = std::path::PathBuf::from(image_name); + let original_image = image::io::Reader::open(&image_name)? + .decode() + .map_err(candle::Error::wrap)?; + let image = { + let data = original_image + .resize_exact(640, 640, image::imageops::FilterType::Triangle) + .to_rgb8() + .into_raw(); + Tensor::from_vec(data, (640, 640, 3), &Device::Cpu)?.permute((2, 0, 1))? + }; + let image = (image.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?; + let predictions = model.forward(&image)?.squeeze(0)?; + let predictions = predictions.t()?; + println!("generated predictions {predictions:?}"); + let image = report(&predictions, original_image, 640, 640)?; + image_name.set_extension("pp.jpg"); + println!("writing {image_name:?}"); + image.save(image_name)? + } + + Ok(()) +} |