summaryrefslogtreecommitdiff
path: root/candle-examples/examples
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2024-09-30 19:31:14 +0200
committerGitHub <noreply@github.com>2024-09-30 19:31:14 +0200
commit683ab698def755c24cec9987069d25efcf831fc4 (patch)
tree84d0bd8ad2f5d7a00f67050c83520326d947b2fe /candle-examples/examples
parent2f49e1b5349f4e56677ec0d3dc3fe98f9cbb87c7 (diff)
downloadcandle-683ab698def755c24cec9987069d25efcf831fc4.tar.gz
candle-683ab698def755c24cec9987069d25efcf831fc4.tar.bz2
candle-683ab698def755c24cec9987069d25efcf831fc4.zip
Add Pixtral. (#2521)
* Add Pixtral. * More pixtral vision encoder. * Sketch a pixtral example. * Sketch a pixtral example. * Better image loading. * Support loading images embedded in safetensor files. * Clippy fixes. * Add the llava multimodal adapter. * Add more of the llava bits. * Add the pixtral config. * More pixtral inference. * Add the text generation bits. * Get the example to work. * Bugfix. * Run some bits of the model in f32. * Blessed version :) * Better rope frequency computations. * README update.
Diffstat (limited to 'candle-examples/examples')
-rw-r--r--candle-examples/examples/pixtral/README.md28
-rw-r--r--candle-examples/examples/pixtral/main.rs336
2 files changed, 364 insertions, 0 deletions
diff --git a/candle-examples/examples/pixtral/README.md b/candle-examples/examples/pixtral/README.md
new file mode 100644
index 00000000..77677571
--- /dev/null
+++ b/candle-examples/examples/pixtral/README.md
@@ -0,0 +1,28 @@
+# pixtral
+
+Pixtral-12B is a 12B text+vision model.
+
+[Blog Post](https://mistral.ai/news/pixtral-12b/) -
+[HF Model Card](https://huggingface.co/mistralai/Pixtral-12B-2409) -
+[HF Community Model Card](https://huggingface.co/mistral-community/pixtral-12b).
+
+```bash
+cargo run --profile=release-with-debug --features cuda --example pixtral -- \
+ --image candle-examples/examples/flux/assets/flux-robot.jpg
+```
+
+```
+Describe the image.
+
+The image depicts a charming, rustic robot standing on a sandy beach at sunset.
+The robot has a vintage, steampunk aesthetic with visible gears and mechanical
+parts. It is holding a small lantern in one hand, which emits a warm glow, and
+its other arm is extended forward as if reaching out or guiding the way. The
+robot's body is adorned with the word "RUST" in bright orange letters, adding to
+its rustic theme.
+
+The background features a dramatic sky filled with clouds, illuminated by the
+setting sun, casting a golden hue over the scene. Gentle waves lap against the
+shore, creating a serene and picturesque atmosphere. The overall mood of the
+image is whimsical and nostalgic, evoking a sense of adventure and tranquility.
+```
diff --git a/candle-examples/examples/pixtral/main.rs b/candle-examples/examples/pixtral/main.rs
new file mode 100644
index 00000000..8e48b60b
--- /dev/null
+++ b/candle-examples/examples/pixtral/main.rs
@@ -0,0 +1,336 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use anyhow::{Error as E, Result};
+use clap::Parser;
+
+use candle_transformers::models::pixtral::{vision_model, Config, Model};
+
+use candle::{DType, Device, Module, Tensor};
+use candle_examples::token_output_stream::TokenOutputStream;
+use candle_nn::VarBuilder;
+use candle_transformers::generation::LogitsProcessor;
+use hf_hub::{api::sync::Api, Repo, RepoType};
+use tokenizers::Tokenizer;
+
+struct TextGeneration {
+ model: Model,
+ image: Tensor,
+ device: Device,
+ tokenizer: TokenOutputStream,
+ logits_processor: LogitsProcessor,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+}
+
+impl TextGeneration {
+ #[allow(clippy::too_many_arguments)]
+ fn new(
+ model: Model,
+ image: Tensor,
+ tokenizer: Tokenizer,
+ seed: u64,
+ temp: Option<f64>,
+ top_p: Option<f64>,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+ device: &Device,
+ ) -> Self {
+ let logits_processor = LogitsProcessor::new(seed, temp, top_p);
+ Self {
+ model,
+ image,
+ tokenizer: TokenOutputStream::new(tokenizer),
+ logits_processor,
+ repeat_penalty,
+ repeat_last_n,
+ device: device.clone(),
+ }
+ }
+
+ fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
+ use std::io::Write;
+ self.tokenizer.clear();
+ let mut tokens = self
+ .tokenizer
+ .tokenizer()
+ .encode(prompt, true)
+ .map_err(E::msg)?
+ .get_ids()
+ .to_vec();
+ let mut generated_tokens = 0usize;
+ let get_token = |v| match self.tokenizer.get_token(v) {
+ Some(token) => Ok(token),
+ None => anyhow::bail!("cannot find the {v} token"),
+ };
+ let bos_token = get_token("<s>")?;
+ let eos_token = get_token("</s>")?;
+ let inst_token = get_token("[INST]")?;
+ let end_inst_token = get_token("[/INST]")?;
+ let img_break = get_token("[IMG_BREAK]")?;
+ let img_end = get_token("[IMG_END]")?;
+ let start_gen = std::time::Instant::now();
+ let mut pos = 0;
+ for index in 0..sample_len {
+ let logits = if index > 0 {
+ let context_size = if index > 0 { 1 } else { tokens.len() };
+ let start_pos = tokens.len().saturating_sub(context_size);
+ let ctxt = &tokens[start_pos..];
+ let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
+ let logits = self.model.language_model.forward(&input, pos)?;
+ pos += context_size;
+ logits
+ } else {
+ let (_b, _c, h, w) = self.image.dims4()?;
+ let h = h / self.model.patch_size;
+ let w = w / self.model.patch_size;
+ let image_embeds = self.model.vision_tower.forward(&self.image)?;
+ let image_embeds = self.model.multi_modal_projector.forward(&image_embeds)?;
+ println!("generated image embeddings {image_embeds:?}");
+ let image_embeds = image_embeds.to_dtype(self.model.dtype)?;
+ for &t in tokens.iter() {
+ if let Some(t) = self.tokenizer.next_token(t)? {
+ print!("{t}")
+ }
+ }
+ std::io::stdout().flush()?;
+
+ let break_embeds = {
+ let input = Tensor::new(&[img_break], &self.device)?.unsqueeze(0)?;
+ self.model.language_model.embed_tokens().forward(&input)?
+ };
+ let start_embeds = {
+ let mut in_tokens = vec![bos_token, inst_token];
+ in_tokens.extend_from_slice(tokens.as_slice());
+ let input = Tensor::new(in_tokens.as_slice(), &self.device)?.unsqueeze(0)?;
+ self.model.language_model.embed_tokens().forward(&input)?
+ };
+ let end_embeds = {
+ let input =
+ Tensor::new(&[img_end, end_inst_token], &self.device)?.unsqueeze(0)?;
+ self.model.language_model.embed_tokens().forward(&input)?
+ };
+ let mut input_embeds = vec![start_embeds];
+ for h_idx in 0..h {
+ if h_idx > 0 {
+ input_embeds.push(break_embeds.clone())
+ }
+ let row = image_embeds.narrow(1, h_idx * w, w)?;
+ input_embeds.push(row);
+ }
+ input_embeds.push(end_embeds);
+
+ let input_embeds = Tensor::cat(&input_embeds, 1)?;
+ let logits = self
+ .model
+ .language_model
+ .forward_embeds(&input_embeds, None, pos)?;
+ pos += input_embeds.dim(1)?;
+ logits
+ };
+ let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
+ let logits = if self.repeat_penalty == 1. {
+ logits
+ } else {
+ let start_at = tokens.len().saturating_sub(self.repeat_last_n);
+ candle_transformers::utils::apply_repeat_penalty(
+ &logits,
+ self.repeat_penalty,
+ &tokens[start_at..],
+ )?
+ };
+
+ let next_token = self.logits_processor.sample(&logits)?;
+ tokens.push(next_token);
+ generated_tokens += 1;
+ if next_token == eos_token {
+ break;
+ }
+ if let Some(t) = self.tokenizer.next_token(next_token)? {
+ print!("{t}");
+ std::io::stdout().flush()?;
+ }
+ }
+ let dt = start_gen.elapsed();
+ if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
+ print!("{rest}");
+ }
+ std::io::stdout().flush()?;
+ println!(
+ "\n{generated_tokens} tokens generated ({:.2} token/s)",
+ generated_tokens as f64 / dt.as_secs_f64(),
+ );
+ Ok(())
+ }
+}
+
+#[derive(Parser, Debug)]
+#[command(author, version, about, long_about = None)]
+struct Args {
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ /// Enable tracing (generates a trace-timestamp.json file).
+ #[arg(long)]
+ tracing: bool,
+
+ #[arg(long, default_value = "Describe the image.\n")]
+ prompt: String,
+
+ /// The temperature used to generate samples.
+ #[arg(long)]
+ temperature: Option<f64>,
+
+ /// Nucleus sampling probability cutoff.
+ #[arg(long)]
+ top_p: Option<f64>,
+
+ /// The seed to use when generating random samples.
+ #[arg(long, default_value_t = 299792458)]
+ seed: u64,
+
+ /// The length of the sample to generate (in tokens).
+ #[arg(long, short = 'n', default_value_t = 10000)]
+ sample_len: usize,
+
+ #[arg(long)]
+ model_id: Option<String>,
+
+ #[arg(long, default_value = "main")]
+ revision: String,
+
+ #[arg(long)]
+ tokenizer_file: Option<String>,
+
+ #[arg(long)]
+ config_file: Option<String>,
+
+ #[arg(long)]
+ weight_files: Option<String>,
+
+ /// Penalty to be applied for repeating tokens, 1. means no penalty.
+ #[arg(long, default_value_t = 1.1)]
+ repeat_penalty: f32,
+
+ /// The context size to consider for the repeat penalty.
+ #[arg(long, default_value_t = 64)]
+ repeat_last_n: usize,
+
+ #[arg(long)]
+ image: String,
+
+ #[arg(long)]
+ vision_only: bool,
+}
+
+fn main() -> Result<()> {
+ use tracing_chrome::ChromeLayerBuilder;
+ use tracing_subscriber::prelude::*;
+
+ let args = Args::parse();
+ let _guard = if args.tracing {
+ let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
+ tracing_subscriber::registry().with(chrome_layer).init();
+ Some(guard)
+ } else {
+ None
+ };
+ println!(
+ "avx: {}, neon: {}, simd128: {}, f16c: {}",
+ candle::utils::with_avx(),
+ candle::utils::with_neon(),
+ candle::utils::with_simd128(),
+ candle::utils::with_f16c()
+ );
+ println!(
+ "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
+ args.temperature.unwrap_or(0.),
+ args.repeat_penalty,
+ args.repeat_last_n
+ );
+
+ let start = std::time::Instant::now();
+ let api = Api::new()?;
+ let model_id = match &args.model_id {
+ Some(model_id) => model_id.to_string(),
+ None => "mistral-community/pixtral-12b".to_string(),
+ };
+ let repo = api.repo(Repo::with_revision(
+ model_id,
+ RepoType::Model,
+ args.revision,
+ ));
+ let tokenizer_filename = match args.tokenizer_file {
+ Some(file) => std::path::PathBuf::from(file),
+ None => repo.get("tokenizer.json")?,
+ };
+ let filenames = match args.weight_files {
+ Some(files) => files
+ .split(',')
+ .map(std::path::PathBuf::from)
+ .collect::<Vec<_>>(),
+ None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
+ };
+ println!("retrieved the files in {:?}", start.elapsed());
+
+ let device = candle_examples::device(args.cpu)?;
+ let dtype = if device.supports_bf16() && !args.vision_only {
+ DType::BF16
+ } else {
+ DType::F32
+ };
+ let config: Config = match args.config_file {
+ Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?,
+ None => {
+ let config_file = repo.get("config.json")?;
+ serde_json::from_slice(&std::fs::read(config_file)?)?
+ }
+ };
+ let image = if args.image.ends_with(".safetensors") {
+ match candle::safetensors::load(&args.image, &device)?.remove("img") {
+ None => anyhow::bail!("no img tensor in {}", args.image),
+ Some(v) => v,
+ }
+ } else {
+ candle_examples::imagenet::load_image_with_std_mean(
+ &args.image,
+ 1024,
+ &[0.48145466, 0.4578275, 0.40821073],
+ &[0.26862954, 0.261_302_6, 0.275_777_1],
+ )?
+ };
+ let image = image.to_device(&device)?.unsqueeze(0)?;
+ println!("loaded image with shape {:?}", image);
+ let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
+
+ if args.vision_only {
+ let start = std::time::Instant::now();
+ let model = vision_model::Model::new(&config.vision_config, vb.pp("vision_tower"))?;
+ println!("loaded the model in {:?}", start.elapsed());
+ let embs = model.forward(&image)?;
+ println!("EMBS\n{embs}");
+ } else {
+ let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
+ let start = std::time::Instant::now();
+ let model = Model::new(&config, vb)?;
+ println!("loaded the model in {:?}", start.elapsed());
+ let mut pipeline = TextGeneration::new(
+ model,
+ image,
+ tokenizer,
+ args.seed,
+ args.temperature,
+ args.top_p,
+ args.repeat_penalty,
+ args.repeat_last_n,
+ &device,
+ );
+ pipeline.run(&args.prompt, args.sample_len)?;
+ }
+
+ Ok(())
+}