summaryrefslogtreecommitdiff
path: root/candle-examples/examples
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-07-05 13:06:33 +0100
committerGitHub <noreply@github.com>2023-07-05 13:06:33 +0100
commit93896f6596e44285f6250f4966ada8c08fa85f09 (patch)
treefee5a01b56231a6d1472fd925f76c73aa8b93ac0 /candle-examples/examples
parentd8f75ceeaa4702b641a9f71ec348fc54a32f4cd7 (diff)
parentbce28ab7938b27931fd51e59c8bcad37038e0337 (diff)
downloadcandle-93896f6596e44285f6250f4966ada8c08fa85f09.tar.gz
candle-93896f6596e44285f6250f4966ada8c08fa85f09.tar.bz2
candle-93896f6596e44285f6250f4966ada8c08fa85f09.zip
Merge branch 'main' into upgrade_bert
Diffstat (limited to 'candle-examples/examples')
-rw-r--r--candle-examples/examples/whisper/audio.rs216
-rw-r--r--candle-examples/examples/whisper/extract_weights.py13
-rw-r--r--candle-examples/examples/whisper/main.rs256
-rw-r--r--candle-examples/examples/whisper/mel_filters.safetensorsbin0 -> 64400 bytes
-rw-r--r--candle-examples/examples/whisper/model.rs547
5 files changed, 1032 insertions, 0 deletions
diff --git a/candle-examples/examples/whisper/audio.rs b/candle-examples/examples/whisper/audio.rs
new file mode 100644
index 00000000..d095e239
--- /dev/null
+++ b/candle-examples/examples/whisper/audio.rs
@@ -0,0 +1,216 @@
+// Audio processing code, adapted from whisper.cpp
+// https://github.com/ggerganov/whisper.cpp
+
+pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {}
+
+impl Float for f32 {}
+impl Float for f64 {}
+
+// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357
+fn fft<T: Float>(inp: &[T]) -> Vec<T> {
+ let n = inp.len();
+ let zero = T::zero();
+ if n == 1 {
+ return vec![inp[0], zero];
+ }
+ if n % 2 == 1 {
+ return dft(inp);
+ }
+ let mut out = vec![zero; n * 2];
+
+ let mut even = vec![];
+ even.reserve(n / 2);
+ let mut odd = vec![];
+ odd.reserve(n / 2);
+
+ for (i, &inp) in inp.iter().enumerate() {
+ if i % 2 == 0 {
+ even.push(inp)
+ } else {
+ odd.push(inp);
+ }
+ }
+
+ let even_fft = fft(&even);
+ let odd_fft = fft(&odd);
+
+ let two_pi = T::PI() + T::PI();
+ let n_t = T::from(n).unwrap();
+ for k in 0..n / 2 {
+ let k_t = T::from(k).unwrap();
+ let theta = two_pi * k_t / n_t;
+ let re = theta.cos();
+ let im = -theta.sin();
+
+ let re_odd = odd_fft[2 * k];
+ let im_odd = odd_fft[2 * k + 1];
+
+ out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd;
+ out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd;
+
+ out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd;
+ out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd;
+ }
+ out
+}
+
+// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337
+fn dft<T: Float>(inp: &[T]) -> Vec<T> {
+ let zero = T::zero();
+ let n = inp.len();
+ let two_pi = T::PI() + T::PI();
+
+ let mut out = Vec::new();
+ out.reserve(2 * n);
+ let n_t = T::from(n).unwrap();
+ for k in 0..n {
+ let k_t = T::from(k).unwrap();
+ let mut re = zero;
+ let mut im = zero;
+
+ for (j, &inp) in inp.iter().enumerate() {
+ let j_t = T::from(j).unwrap();
+ let angle = two_pi * k_t * j_t / n_t;
+ re += inp * angle.cos();
+ im -= inp * angle.sin();
+ }
+
+ out.push(re);
+ out.push(im);
+ }
+ out
+}
+
+#[allow(clippy::too_many_arguments)]
+// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414
+fn log_mel_spectrogram_w<T: Float>(
+ ith: usize,
+ hann: &[T],
+ samples: &[T],
+ filters: &[T],
+ fft_size: usize,
+ fft_step: usize,
+ speed_up: bool,
+ n_len: usize,
+ n_mel: usize,
+ n_threads: usize,
+) -> Vec<T> {
+ let n_fft = if speed_up {
+ 1 + fft_size / 4
+ } else {
+ 1 + fft_size / 2
+ };
+
+ let zero = T::zero();
+ let half = T::from(0.5).unwrap();
+ let mut fft_in = vec![zero; fft_size];
+ let mut mel = vec![zero; n_len * n_mel];
+
+ for i in (ith..n_len).step_by(n_threads) {
+ let offset = i * fft_step;
+
+ // apply Hanning window
+ for j in 0..fft_size {
+ fft_in[j] = if offset + j < samples.len() {
+ hann[j] * samples[offset + j]
+ } else {
+ zero
+ }
+ }
+
+ // FFT -> mag^2
+ let mut fft_out: Vec<T> = fft(&fft_in);
+
+ for j in 0..fft_size {
+ fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1];
+ }
+ for j in 1..fft_size / 2 {
+ let v = fft_out[fft_size - j];
+ fft_out[j] += v;
+ }
+
+ if speed_up {
+ // scale down in the frequency domain results in a speed up in the time domain
+ for j in 0..n_fft {
+ fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]);
+ }
+ }
+
+ // mel spectrogram
+ for j in 0..n_mel {
+ let mut sum = zero;
+ for k in 0..n_fft {
+ sum += fft_out[k] * filters[j * n_fft + k];
+ }
+ mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10();
+ }
+ }
+ mel
+}
+
+fn log_mel_spectrogram_<T: Float + std::fmt::Display>(
+ samples: &[T],
+ filters: &[T],
+ fft_size: usize,
+ fft_step: usize,
+ n_mel: usize,
+ speed_up: bool,
+) -> Vec<T> {
+ let zero = T::zero();
+ let two_pi = T::PI() + T::PI();
+ let half = T::from(0.5).unwrap();
+ let one = T::from(1.0).unwrap();
+ let four = T::from(4.0).unwrap();
+ let fft_size_t = T::from(fft_size).unwrap();
+
+ let hann: Vec<T> = (0..fft_size)
+ .map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos()))
+ .collect();
+ let n_len = samples.len() / fft_step;
+
+ // pad audio with at least one extra chunk of zeros
+ let pad = 100 * super::CHUNK_LENGTH / 2;
+ let n_len = if n_len % pad != 0 {
+ (n_len / pad + 1) * pad
+ } else {
+ n_len
+ };
+ let n_len = n_len + pad;
+ let samples = {
+ let mut samples_padded = samples.to_vec();
+ let to_add = n_len * fft_step - samples.len();
+ samples_padded.extend(std::iter::repeat(zero).take(to_add));
+ samples_padded
+ };
+
+ // Use a single thread for now.
+ let mut mel = log_mel_spectrogram_w(
+ 0, &hann, &samples, filters, fft_size, fft_step, speed_up, n_len, n_mel, 1,
+ );
+ let mmax = mel
+ .iter()
+ .max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater))
+ .copied()
+ .unwrap_or(zero)
+ - T::from(8).unwrap();
+ for m in mel.iter_mut() {
+ let v = T::max(*m, mmax);
+ *m = v / four + one
+ }
+ mel
+}
+
+pub fn pcm_to_mel<T: Float + std::fmt::Display>(
+ samples: &[T],
+ filters: &[T],
+) -> anyhow::Result<Vec<T>> {
+ let mel = log_mel_spectrogram_(
+ samples,
+ filters,
+ super::N_FFT,
+ super::HOP_LENGTH,
+ super::N_MELS,
+ false,
+ );
+ Ok(mel)
+}
diff --git a/candle-examples/examples/whisper/extract_weights.py b/candle-examples/examples/whisper/extract_weights.py
new file mode 100644
index 00000000..65602703
--- /dev/null
+++ b/candle-examples/examples/whisper/extract_weights.py
@@ -0,0 +1,13 @@
+# Get the checkpoint from
+# https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt
+
+import torch
+from safetensors.torch import save_file
+
+data = torch.load("tiny.en.pt")
+weights = {}
+for k, v in data["model_state_dict"].items():
+ weights[k] = v.contiguous()
+ print(k, v.shape, v.dtype)
+save_file(weights, "tiny.en.safetensors")
+print(data["dims"])
diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs
new file mode 100644
index 00000000..6ea3e536
--- /dev/null
+++ b/candle-examples/examples/whisper/main.rs
@@ -0,0 +1,256 @@
+#![allow(dead_code)]
+// https://github.com/openai/whisper/blob/main/whisper/model.py
+// TODO:
+// - kv-cache support?
+// - Language detection?
+// - Batch size greater than 1.
+
+use anyhow::{Error as E, Result};
+use candle::{DType, Device, Tensor};
+use clap::Parser;
+use rand::{distributions::Distribution, SeedableRng};
+use tokenizers::Tokenizer;
+
+mod audio;
+mod model;
+use model::{Config, VarBuilder, Whisper};
+
+const DTYPE: DType = DType::F32;
+
+// Audio parameters.
+const SAMPLE_RATE: usize = 16000;
+const N_FFT: usize = 400;
+const N_MELS: usize = 80;
+const HOP_LENGTH: usize = 160;
+const CHUNK_LENGTH: usize = 30;
+const N_SAMPLES: usize = CHUNK_LENGTH * SAMPLE_RATE; // 480000 samples in a 30-second chunk
+const N_FRAMES: usize = N_SAMPLES / HOP_LENGTH; // 3000 frames in a mel spectrogram input
+const N_SAMPLES_PER_TOKEN: usize = HOP_LENGTH * 2; // the initial convolutions has stride 2
+const FRAMES_PER_SECOND: usize = SAMPLE_RATE / HOP_LENGTH; // 10ms per audio frame
+const TOKENS_PER_SECOND: usize = SAMPLE_RATE / N_SAMPLES_PER_TOKEN; // 20ms per audio token
+
+const NO_SPEECH_THRESHOLD: f64 = 0.6;
+const LOGPROB_THRESHOLD: f64 = -1.0;
+const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0];
+const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4;
+
+// Tokenizer dependent bits.
+const SOT_TOKEN: u32 = 50257;
+const EOT_TOKEN: u32 = 50256;
+const NO_SPEECH_TOKEN: u32 = 50361;
+const NO_TIMESTAMP_TOKEN: u32 = 50362;
+
+#[derive(Debug, Clone)]
+struct DecodingResult {
+ tokens: Vec<u32>,
+ text: String,
+ avg_logprob: f64,
+ no_speech_prob: f64,
+ temperature: f64,
+ compression_ratio: f64,
+}
+
+#[derive(Debug, Clone)]
+struct Segment {
+ start: f64,
+ duration: f64,
+ dr: DecodingResult,
+}
+
+struct Decode {
+ model: Whisper,
+ rng: rand::rngs::StdRng,
+ tokenizer: Tokenizer,
+}
+
+impl Decode {
+ fn decode(&mut self, mel: &Tensor, t: f64) -> Result<DecodingResult> {
+ let model = &self.model;
+ let audio_features = model.encoder.forward(mel)?;
+ println!("audio features: {:?}", audio_features.dims());
+ let sample_len = model.config.n_text_ctx / 2;
+ let mut sum_logprob = 0f64;
+ let mut no_speech_prob = f64::NAN;
+ let mut tokens = vec![SOT_TOKEN];
+ for i in 0..sample_len {
+ let tokens_t = Tensor::new(tokens.as_slice(), &mel.device())?;
+
+ // The model expects a batch dim but this inference loop does not handle
+ // it so we add it at this point.
+ let tokens_t = tokens_t.unsqueeze(0)?;
+ let logits = model.decoder.forward(&tokens_t, &audio_features)?;
+ let logits = logits.squeeze(0)?;
+
+ // Extract the no speech probability on the first iteration by looking at the first
+ // token logits and the probability for the according token.
+ if i == 0 {
+ no_speech_prob = logits
+ .get(0)?
+ .softmax(0)?
+ .get(NO_SPEECH_TOKEN as usize)?
+ .to_scalar::<f32>()? as f64;
+ }
+
+ let (seq_len, _) = logits.shape().r2()?;
+ let logits = logits.get(seq_len - 1)?;
+ let next_token = if t > 0f64 {
+ let prs = (&logits / t)?.softmax(0)?;
+ let logits_v: Vec<f32> = prs.to_vec1()?;
+ let distr = rand::distributions::WeightedIndex::new(&logits_v)?;
+ distr.sample(&mut self.rng) as u32
+ } else {
+ let logits_v: Vec<f32> = logits.to_vec1()?;
+ logits_v
+ .iter()
+ .enumerate()
+ .max_by(|(_, u), (_, v)| u.total_cmp(v))
+ .map(|(i, _)| i as u32)
+ .unwrap()
+ };
+ tokens.push(next_token);
+ let prob = logits
+ .softmax(logits.rank() - 1)?
+ .get(next_token as usize)?
+ .to_scalar::<f32>()? as f64;
+ if next_token == EOT_TOKEN || tokens.len() > model.config.n_text_ctx {
+ break;
+ }
+ sum_logprob += prob.ln();
+ }
+ let text = self
+ .tokenizer
+ .decode(tokens.clone(), true)
+ .map_err(E::msg)?;
+ let avg_logprob = sum_logprob / tokens.len() as f64;
+
+ Ok(DecodingResult {
+ tokens,
+ text,
+ avg_logprob,
+ no_speech_prob,
+ temperature: t,
+ compression_ratio: f64::NAN,
+ })
+ }
+
+ fn decode_with_fallback(&mut self, segment: &Tensor) -> Result<DecodingResult> {
+ for (i, &t) in TEMPERATURES.iter().enumerate() {
+ let dr: Result<DecodingResult> = self.decode(segment, t);
+ if i == TEMPERATURES.len() - 1 {
+ return dr;
+ }
+ // On errors, we try again with a different temperature.
+ match dr {
+ Ok(dr) => {
+ let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD
+ || dr.avg_logprob < LOGPROB_THRESHOLD;
+ if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD {
+ return Ok(dr);
+ }
+ }
+ Err(err) => {
+ println!("Error running at {t}: {err}")
+ }
+ }
+ }
+ unreachable!()
+ }
+}
+
+#[derive(Parser, Debug)]
+#[command(author, version, about, long_about = None)]
+struct Args {
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ #[arg(long)]
+ weights: String,
+
+ /// The input to be processed, in wav formats.
+ #[arg(long)]
+ input: String,
+
+ #[arg(long)]
+ tokenizer_config: String,
+
+ /// The seed to use when generating random samples.
+ #[arg(long, default_value_t = 299792458)]
+ seed: u64,
+
+ /// The mel filters in safetensors format.
+ #[arg(
+ long,
+ default_value = "candle-examples/examples/whisper/mel_filters.safetensors"
+ )]
+ filters: String,
+}
+
+fn main() -> Result<()> {
+ let args = Args::parse();
+ let device = if args.cpu {
+ Device::Cpu
+ } else {
+ Device::new_cuda(0)?
+ };
+ let rng = rand::rngs::StdRng::seed_from_u64(args.seed);
+
+ let tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?;
+
+ let mel_filters = unsafe { candle::safetensors::MmapedFile::new(args.filters)? };
+ let mel_filters = mel_filters.deserialize()?;
+ let mel_filters = mel_filters.tensor("mel_80", &device)?;
+ println!("loaded mel filters {:?}", mel_filters.shape());
+ let mel_filters = mel_filters.flatten_all()?.to_vec1::<f32>()?;
+
+ let mut input = std::fs::File::open(args.input)?;
+ let (header, data) = wav::read(&mut input)?;
+ println!("loaded wav data: {header:?}");
+ if header.sampling_rate != SAMPLE_RATE as u32 {
+ anyhow::bail!("wav file must have a {} sampling rate", SAMPLE_RATE)
+ }
+ let data = data.as_sixteen().expect("expected 16 bit wav file");
+ let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize]
+ .iter()
+ .map(|v| *v as f32 / 32768.)
+ .collect();
+ println!("pcm data loaded {}", pcm_data.len());
+ let mel = audio::pcm_to_mel(&pcm_data, &mel_filters)?;
+ let mel_len = mel.len();
+ let mel = Tensor::from_vec(mel, (1, N_MELS, mel_len / N_MELS), &device)?;
+ println!("loaded mel: {:?}", mel.dims());
+
+ let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? };
+ let weights = weights.deserialize()?;
+ let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device);
+ let model = Whisper::load(&vb, Config::tiny_en())?;
+ let mut dc = Decode {
+ model,
+ rng,
+ tokenizer,
+ };
+
+ let (_, _, content_frames) = mel.shape().r3()?;
+ let mut seek = 0;
+ let mut segments = vec![];
+ while seek < content_frames {
+ let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
+ let segment_size = usize::min(content_frames - seek, N_FRAMES);
+ let mel_segment = mel.narrow(2, seek, segment_size)?;
+ let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
+ let dr = dc.decode_with_fallback(&mel_segment)?;
+ seek += segment_size;
+ if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD {
+ println!("no speech detected, skipping {seek} {dr:?}");
+ continue;
+ }
+ let segment = Segment {
+ start: time_offset,
+ duration: segment_duration,
+ dr,
+ };
+ println!("{seek}: {segment:?}");
+ segments.push(segment)
+ }
+ Ok(())
+}
diff --git a/candle-examples/examples/whisper/mel_filters.safetensors b/candle-examples/examples/whisper/mel_filters.safetensors
new file mode 100644
index 00000000..98f3af44
--- /dev/null
+++ b/candle-examples/examples/whisper/mel_filters.safetensors
Binary files differ
diff --git a/candle-examples/examples/whisper/model.rs b/candle-examples/examples/whisper/model.rs
new file mode 100644
index 00000000..53ee6a90
--- /dev/null
+++ b/candle-examples/examples/whisper/model.rs
@@ -0,0 +1,547 @@
+// We use anyhow rather than candle errors as it provides better support for getting the backtrace
+// back when using RUST_LIB_BACKTRACE=1.
+use anyhow::Result;
+use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
+use std::collections::HashMap;
+
+pub struct VarBuilder<'a> {
+ safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
+ dtype: DType,
+ device: Device,
+}
+
+impl<'a> VarBuilder<'a> {
+ pub fn from_safetensors(
+ safetensors: Vec<SafeTensors<'a>>,
+ dtype: DType,
+ device: Device,
+ ) -> Self {
+ let mut routing = HashMap::new();
+ for (index, sf) in safetensors.iter().enumerate() {
+ for k in sf.names() {
+ routing.insert(k.to_string(), index);
+ }
+ }
+ Self {
+ safetensors: Some((routing, safetensors)),
+ device,
+ dtype,
+ }
+ }
+
+ pub fn zeros(dtype: DType, device: Device) -> Self {
+ Self {
+ safetensors: None,
+ device,
+ dtype,
+ }
+ }
+
+ pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
+ let s: Shape = s.into();
+ match &self.safetensors {
+ None => Tensor::zeros(s, self.dtype, &self.device),
+ Some((routing, safetensors)) => {
+ // Unwrap or 0 just to let the proper error flow.
+ let index = routing.get(tensor_name).unwrap_or(&0);
+ let tensor = safetensors[*index]
+ .tensor(tensor_name, &self.device)?
+ .to_dtype(self.dtype)?;
+ if *tensor.shape() != s {
+ let msg = format!("shape mismatch for {tensor_name}");
+ Err(candle::Error::UnexpectedShape {
+ msg,
+ expected: s,
+ got: tensor.shape().clone(),
+ })?
+ }
+ Ok(tensor)
+ }
+ }
+ }
+}
+
+#[derive(Debug, Clone, Copy, PartialEq, Eq)]
+enum HiddenAct {
+ Gelu,
+ Relu,
+}
+
+impl HiddenAct {
+ fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
+ match self {
+ Self::Gelu => xs.gelu(),
+ Self::Relu => xs.relu(),
+ }
+ }
+}
+
+#[derive(Debug, Clone, PartialEq)]
+pub struct Config {
+ pub n_mels: usize,
+ pub n_audio_ctx: usize,
+ pub n_audio_state: usize,
+ pub n_audio_head: usize,
+ pub n_audio_layer: usize,
+ pub n_vocab: usize,
+ pub n_text_ctx: usize,
+ pub n_text_state: usize,
+ pub n_text_head: usize,
+ pub n_text_layer: usize,
+}
+
+impl Config {
+ pub fn tiny_en() -> Self {
+ Self {
+ n_mels: 80,
+ n_vocab: 51864,
+ n_audio_ctx: 1500,
+ n_audio_state: 384,
+ n_audio_head: 6,
+ n_audio_layer: 4,
+ n_text_ctx: 448,
+ n_text_state: 384,
+ n_text_head: 6,
+ n_text_layer: 4,
+ }
+ }
+}
+
+struct Embedding {
+ embeddings: Tensor,
+ hidden_size: usize,
+}
+
+impl Embedding {
+ fn new(embeddings: Tensor, hidden_size: usize) -> Self {
+ Self {
+ embeddings,
+ hidden_size,
+ }
+ }
+
+ fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?;
+ Ok(Self::new(embeddings, hidden_size))
+ }
+
+ fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
+ let mut final_dims = indexes.dims().to_vec();
+ final_dims.push(self.hidden_size);
+ let indexes = indexes.flatten_all()?;
+ let values = Tensor::embedding(&indexes, &self.embeddings)?;
+ let values = values.reshape(final_dims)?;
+ Ok(values)
+ }
+}
+
+struct Linear {
+ weight: Tensor,
+ bias: Option<Tensor>,
+}
+
+impl Linear {
+ fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
+ let bias = vb.get(size2, &format!("{p}.bias"))?;
+ Ok(Self {
+ weight,
+ bias: Some(bias),
+ })
+ }
+
+ fn load_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
+ Ok(Self { weight, bias: None })
+ }
+
+ fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
+ let (bsize, _, _) = x.shape().r3()?;
+ let w = self.weight.broadcast_left(bsize)?.t()?;
+ let x = x.matmul(&w)?;
+ match &self.bias {
+ None => Ok(x),
+ Some(bias) => x.broadcast_add(bias),
+ }
+ }
+}
+
+#[derive(Debug, Clone, Copy, PartialEq, Eq)]
+struct ConvConfig {
+ padding: usize,
+ stride: usize,
+}
+
+impl Default for ConvConfig {
+ fn default() -> Self {
+ Self {
+ padding: 0,
+ stride: 1,
+ }
+ }
+}
+
+struct Conv1D {
+ weight: Tensor,
+ bias: Option<Tensor>,
+ config: ConvConfig,
+}
+
+impl Conv1D {
+ fn load(
+ in_channels: usize,
+ out_channels: usize,
+ kernel_size: usize,
+ config: ConvConfig,
+ p: &str,
+ vb: &VarBuilder,
+ ) -> Result<Self> {
+ let weight = vb.get(
+ (out_channels, in_channels, kernel_size),
+ &format!("{p}.weight"),
+ )?;
+ let bias = vb.get(out_channels, &format!("{p}.bias"))?;
+ Ok(Self {
+ weight,
+ bias: Some(bias),
+ config,
+ })
+ }
+
+ fn load_no_bias(
+ in_channels: usize,
+ out_channels: usize,
+ kernel_size: usize,
+ config: ConvConfig,
+ p: &str,
+ vb: &VarBuilder,
+ ) -> Result<Self> {
+ let weight = vb.get(
+ (out_channels, in_channels, kernel_size),
+ &format!("{p}.weight"),
+ )?;
+ Ok(Self {
+ weight,
+ bias: None,
+ config,
+ })
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x = x.conv1d(&self.weight, self.config.padding, self.config.stride)?;
+ match &self.bias {
+ None => Ok(x),
+ Some(bias) => {
+ let b = bias.shape().r1()?;
+ let bias = bias.reshape((1, b, 1))?;
+ Ok(x.broadcast_add(&bias)?)
+ }
+ }
+ }
+}
+
+struct Dropout {
+ pr: f64,
+}
+
+impl Dropout {
+ fn new(pr: f64) -> Self {
+ Self { pr }
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ // TODO
+ Ok(x.clone())
+ }
+}
+
+// This layer norm version handles both weight and bias so removes the mean.
+struct LayerNorm {
+ weight: Tensor,
+ bias: Tensor,
+ eps: f64,
+}
+
+impl LayerNorm {
+ fn load(size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let weight = vb.get(size, &format!("{p}.weight"))?;
+ let bias = vb.get(size, &format!("{p}.bias"))?;
+ Ok(Self {
+ weight,
+ bias,
+ eps: 1e-5,
+ })
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
+ let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
+ let x = x.broadcast_sub(&mean_x)?;
+ let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
+ let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
+ let x = x_normed
+ .broadcast_mul(&self.weight)?
+ .broadcast_add(&self.bias)?;
+ Ok(x)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
+struct MultiHeadAttention {
+ query: Linear,
+ key: Linear,
+ value: Linear,
+ out: Linear,
+ n_head: usize,
+}
+
+impl MultiHeadAttention {
+ fn load(n_state: usize, n_head: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let query = Linear::load(n_state, n_state, &format!("{p}.query"), vb)?;
+ let value = Linear::load(n_state, n_state, &format!("{p}.value"), vb)?;
+ let key = Linear::load_no_bias(n_state, n_state, &format!("{p}.key"), vb)?;
+ let out = Linear::load(n_state, n_state, &format!("{p}.out"), vb)?;
+ Ok(Self {
+ query,
+ key,
+ value,
+ out,
+ n_head,
+ })
+ }
+
+ fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result<Tensor> {
+ let q = self.query.forward(x)?;
+ let k = self.key.forward(xa.unwrap_or(x))?;
+ let v = self.value.forward(xa.unwrap_or(x))?;
+ let wv = self.qkv_attention(&q, &k, &v, mask)?;
+ let out = self.out.forward(&wv)?;
+ Ok(out)
+ }
+
+ fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
+ let (n_batch, n_ctx, n_state) = x.shape().r3()?;
+ let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
+ Ok(x.reshape(target_dims)?.transpose(1, 2)?)
+ }
+
+ fn qkv_attention(
+ &self,
+ q: &Tensor,
+ k: &Tensor,
+ v: &Tensor,
+ mask: Option<&Tensor>,
+ ) -> Result<Tensor> {
+ let (_, n_ctx, n_state) = q.shape().r3()?;
+ let scale = ((n_state / self.n_head) as f64).powf(-0.25);
+ let q = (self.reshape_head(q)? * scale)?;
+ let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?;
+ let v = self.reshape_head(v)?.contiguous()?;
+ let mut qk = q.matmul(&k)?;
+ if let Some(mask) = mask {
+ let mask = mask.narrow(0, 0, n_ctx)?.narrow(1, 0, n_ctx)?;
+ qk = qk.broadcast_add(&mask)?
+ }
+ let w = qk.softmax(qk.rank() - 1)?;
+ let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?;
+ Ok(wv)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
+struct ResidualAttentionBlock {
+ attn: MultiHeadAttention,
+ attn_ln: LayerNorm,
+ cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
+ mlp_linear1: Linear,
+ mlp_linear2: Linear,
+ mlp_ln: LayerNorm,
+}
+
+impl ResidualAttentionBlock {
+ fn load(n_state: usize, n_head: usize, ca: bool, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.attn"), vb)?;
+ let attn_ln = LayerNorm::load(n_state, &format!("{p}.attn_ln"), vb)?;
+ let cross_attn = if ca {
+ let cross_attn =
+ MultiHeadAttention::load(n_state, n_head, &format!("{p}.cross_attn"), vb)?;
+ let cross_attn_ln = LayerNorm::load(n_state, &format!("{p}.cross_attn_ln"), vb)?;
+ Some((cross_attn, cross_attn_ln))
+ } else {
+ None
+ };
+ let n_mlp = n_state * 4;
+ let mlp_linear1 = Linear::load(n_state, n_mlp, &format!("{p}.mlp.0"), vb)?;
+ let mlp_linear2 = Linear::load(n_mlp, n_state, &format!("{p}.mlp.2"), vb)?;
+ let mlp_ln = LayerNorm::load(n_state, &format!("{p}.mlp_ln"), vb)?;
+ Ok(Self {
+ attn,
+ attn_ln,
+ cross_attn,
+ mlp_linear1,
+ mlp_linear2,
+ mlp_ln,
+ })
+ }
+
+ fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result<Tensor> {
+ let attn = self.attn.forward(&self.attn_ln.forward(x)?, None, mask)?;
+ let mut x = (x + attn)?;
+ if let Some((attn, ln)) = &self.cross_attn {
+ x = (&x + attn.forward(&ln.forward(&x)?, xa, None)?)?;
+ }
+ let mlp = self.mlp_linear2.forward(
+ &self
+ .mlp_linear1
+ .forward(&self.mlp_ln.forward(&x)?)?
+ .gelu()?,
+ )?;
+ Ok((x + mlp)?)
+ }
+}
+
+fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
+ let max_timescale = 10000f32;
+ let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
+ let inv_timescales: Vec<_> = (0..channels / 2)
+ .map(|i| (i as f32 * (-log_timescale_increment)).exp())
+ .collect();
+ let arange: Vec<_> = (0..length).map(|c| c as f32).collect();
+ let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
+ let arange = Tensor::new(arange.as_slice(), &Device::Cpu)?.unsqueeze(1)?;
+ let sh = (length, channels / 2);
+ let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
+ let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
+ Ok(sincos)
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
+pub struct AudioEncoder {
+ conv1: Conv1D,
+ conv2: Conv1D,
+ positional_embedding: Tensor,
+ blocks: Vec<ResidualAttentionBlock>,
+ ln_post: LayerNorm,
+}
+
+impl AudioEncoder {
+ fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
+ let n_state = cfg.n_audio_state;
+ let n_head = cfg.n_audio_head;
+ let n_ctx = cfg.n_audio_ctx;
+ let cfg1 = ConvConfig {
+ padding: 1,
+ stride: 1,
+ };
+ let cfg2 = ConvConfig {
+ padding: 1,
+ stride: 2,
+ };
+ let conv1 = Conv1D::load(cfg.n_mels, n_state, 3, cfg1, &format!("{p}.conv1"), vb)?;
+ let conv2 = Conv1D::load(n_state, n_state, 3, cfg2, &format!("{p}.conv2"), vb)?;
+ let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(&vb.device)?;
+ let blocks = (0..cfg.n_audio_layer)
+ .map(|i| {
+ ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb)
+ })
+ .collect::<Result<Vec<_>>>()?;
+ let ln_post = LayerNorm::load(n_state, &format!("{p}.ln_post"), vb)?;
+ Ok(Self {
+ conv1,
+ conv2,
+ positional_embedding,
+ blocks,
+ ln_post,
+ })
+ }
+ pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x = self.conv1.forward(x)?.gelu()?;
+ let x = self.conv2.forward(&x)?.gelu()?;
+ let x = x.transpose(1, 2)?;
+ let mut x = x.broadcast_add(&self.positional_embedding)?;
+ for block in self.blocks.iter() {
+ x = block.forward(&x, None, None)?
+ }
+ let x = self.ln_post.forward(&x)?;
+ Ok(x)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
+pub struct TextDecoder {
+ token_embedding: Embedding,
+ positional_embedding: Tensor,
+ blocks: Vec<ResidualAttentionBlock>,
+ ln: LayerNorm,
+ mask: Tensor,
+}
+
+impl TextDecoder {
+ fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
+ let n_state = cfg.n_text_state;
+ let n_head = cfg.n_text_head;
+ let n_ctx = cfg.n_text_ctx;
+ let token_embedding =
+ Embedding::load(cfg.n_vocab, n_state, &format!("{p}.token_embedding"), vb)?;
+ let positional_embedding =
+ vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))?;
+ let blocks = (0..cfg.n_text_layer)
+ .map(|i| {
+ ResidualAttentionBlock::load(n_state, n_head, true, &format!("{p}.blocks.{i}"), vb)
+ })
+ .collect::<Result<Vec<_>>>()?;
+ let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?;
+ let mask: Vec<_> = (0..n_ctx)
+ .flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
+ .collect();
+ let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), &vb.device)?;
+
+ Ok(Self {
+ token_embedding,
+ positional_embedding,
+ blocks,
+ ln,
+ mask,
+ })
+ }
+
+ pub fn forward(&self, x: &Tensor, xa: &Tensor) -> Result<Tensor> {
+ let x_dims = x.dims();
+ let last = x_dims[x_dims.len() - 1];
+ let token_embedding = self.token_embedding.forward(x)?;
+ let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
+ let mut x = token_embedding.broadcast_add(&positional_embedding)?;
+ for block in self.blocks.iter() {
+ x = block.forward(&x, Some(xa), Some(&self.mask))?;
+ }
+ let x = self.ln.forward(&x)?;
+ let w = self.token_embedding.embeddings.broadcast_left(x_dims[0])?;
+ let logits = x.matmul(&w.t()?)?;
+ Ok(logits)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
+pub struct Whisper {
+ pub encoder: AudioEncoder,
+ pub decoder: TextDecoder,
+ pub config: Config,
+}
+
+impl Whisper {
+ pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
+ let encoder = AudioEncoder::load("encoder", vb, &config)?;
+ let decoder = TextDecoder::load("decoder", vb, &config)?;
+ Ok(Self {
+ encoder,
+ decoder,
+ config,
+ })
+ }
+
+ pub fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result<Tensor> {
+ let enc = self.encoder.forward(mel)?;
+ let dec = self.decoder.forward(tokens, &enc)?;
+ Ok(dec)
+ }
+}