diff options
author | Jani Monoses <jani.monoses@gmail.com> | 2024-08-01 12:59:22 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-08-01 11:59:22 +0200 |
commit | ac51f477eb354c319e604a5a4edc846e9ebc598f (patch) | |
tree | 507fae826e6494f576865255b47b22f2cb9cf5fb /candle-examples/examples | |
parent | d4b6f6eef64d805e9fd678608378e1dfeb8278d2 (diff) | |
download | candle-ac51f477eb354c319e604a5a4edc846e9ebc598f.tar.gz candle-ac51f477eb354c319e604a5a4edc846e9ebc598f.tar.bz2 candle-ac51f477eb354c319e604a5a4edc846e9ebc598f.zip |
Add Hiera vision model. (#2382)
Diffstat (limited to 'candle-examples/examples')
-rw-r--r-- | candle-examples/examples/hiera/README.md | 18 | ||||
-rw-r--r-- | candle-examples/examples/hiera/main.rs | 99 |
2 files changed, 117 insertions, 0 deletions
diff --git a/candle-examples/examples/hiera/README.md b/candle-examples/examples/hiera/README.md new file mode 100644 index 00000000..763ce1a5 --- /dev/null +++ b/candle-examples/examples/hiera/README.md @@ -0,0 +1,18 @@ +# hiera + +[Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles](https://arxiv.org/abs/2306.00989) +This candle implementation uses pre-trained Hiera models from timm for inference. +The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes. + +## Running an example + +``` +$ cargo run --example hiera --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which tiny +loaded image Tensor[dims 3, 224, 224; f32] +model built +mountain bike, all-terrain bike, off-roader: 71.15% +unicycle, monocycle : 7.11% +knee pad : 4.26% +crash helmet : 1.48% +moped : 1.07% +``` diff --git a/candle-examples/examples/hiera/main.rs b/candle-examples/examples/hiera/main.rs new file mode 100644 index 00000000..55bb1d54 --- /dev/null +++ b/candle-examples/examples/hiera/main.rs @@ -0,0 +1,99 @@ +#[cfg(feature = "mkl")] +extern crate intel_mkl_src; + +#[cfg(feature = "accelerate")] +extern crate accelerate_src; + +use clap::{Parser, ValueEnum}; + +use candle::{DType, IndexOp, D}; +use candle_nn::{Module, VarBuilder}; +use candle_transformers::models::hiera; + +#[derive(Clone, Copy, Debug, ValueEnum)] +enum Which { + Tiny, + Small, + Base, + BasePlus, + Large, + Huge, +} + +impl Which { + fn model_filename(&self) -> String { + let name = match self { + Self::Tiny => "tiny", + Self::Small => "small", + Self::Base => "base", + Self::BasePlus => "base_plus", + Self::Large => "large", + Self::Huge => "huge", + }; + format!("timm/hiera_{}_224.mae_in1k_ft_in1k", name) + } + + fn config(&self) -> hiera::Config { + match self { + Self::Tiny => hiera::Config::tiny(), + Self::Small => hiera::Config::small(), + Self::Base => hiera::Config::base(), + Self::BasePlus => hiera::Config::base_plus(), + Self::Large => hiera::Config::large(), + Self::Huge => hiera::Config::huge(), + } + } +} + +#[derive(Parser)] +struct Args { + #[arg(long)] + model: Option<String>, + + #[arg(long)] + image: String, + + /// Run on CPU rather than on GPU. + #[arg(long)] + cpu: bool, + + #[arg(value_enum, long, default_value_t=Which::Tiny)] + which: Which, +} + +pub fn main() -> anyhow::Result<()> { + let args = Args::parse(); + + let device = candle_examples::device(args.cpu)?; + + let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?; + println!("loaded image {image:?}"); + + let model_file = match args.model { + None => { + let model_name = args.which.model_filename(); + let api = hf_hub::api::sync::Api::new()?; + let api = api.model(model_name); + api.get("model.safetensors")? + } + Some(model) => model.into(), + }; + + let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; + let model = hiera::hiera(&args.which.config(), 1000, vb)?; + println!("model built"); + let logits = model.forward(&image.unsqueeze(0)?)?; + let prs = candle_nn::ops::softmax(&logits, D::Minus1)? + .i(0)? + .to_vec1::<f32>()?; + let mut prs = prs.iter().enumerate().collect::<Vec<_>>(); + prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); + for &(category_idx, pr) in prs.iter().take(5) { + println!( + "{:24}: {:.2}%", + candle_examples::imagenet::CLASSES[category_idx], + 100. * pr + ); + } + Ok(()) +} |