diff options
author | Nicolas Patry <patry.nicolas@protonmail.com> | 2023-08-01 16:36:53 +0200 |
---|---|---|
committer | Nicolas Patry <patry.nicolas@protonmail.com> | 2023-08-02 18:40:24 +0200 |
commit | a44471a305f2bc768c4f0dd0e7d23a7cfe3cb408 (patch) | |
tree | f2f51f7e58f0fd7bfb03bc67e4b7bac99278d340 /candle-examples/src | |
parent | 45642a8530fdfbd64fcac118aed59b7cb7dfaf45 (diff) | |
download | candle-a44471a305f2bc768c4f0dd0e7d23a7cfe3cb408.tar.gz candle-a44471a305f2bc768c4f0dd0e7d23a7cfe3cb408.tar.bz2 candle-a44471a305f2bc768c4f0dd0e7d23a7cfe3cb408.zip |
Adding more details on how to load things.
- Loading with memmap
- Loading a sharded tensor
- Moved some snippets to `candle-examples/src/lib.rs` This is because
managing book specific dependencies is a pain https://github.com/rust-lang/mdBook/issues/706
- This causes a non aligned inclusion https://github.com/rust-lang/mdBook/pull/1856 which we have
to ignore fmt to remove.
mdbook might need some more love :)
Diffstat (limited to 'candle-examples/src')
-rw-r--r-- | candle-examples/src/lib.rs | 99 |
1 files changed, 99 insertions, 0 deletions
diff --git a/candle-examples/src/lib.rs b/candle-examples/src/lib.rs index 285aee04..3410026e 100644 --- a/candle-examples/src/lib.rs +++ b/candle-examples/src/lib.rs @@ -11,3 +11,102 @@ pub fn device(cpu: bool) -> Result<Device> { Ok(device) } } + +#[cfg(test)] +mod tests { + // NOTE: Waiting on https://github.com/rust-lang/mdBook/pull/1856 + #[rustfmt::skip] + #[tokio::test] + async fn book_hub_1() { +// ANCHOR: book_hub_1 +use candle::Device; +use hf_hub::api::tokio::Api; + +let api = Api::new().unwrap(); +let repo = api.model("bert-base-uncased".to_string()); + +let weights_filename = repo.get("model.safetensors").await.unwrap(); + +let weights = candle::safetensors::load(weights_filename, &Device::Cpu).unwrap(); +// ANCHOR_END: book_hub_1 + assert_eq!(weights.len(), 206); + } + + #[rustfmt::skip] + #[test] + fn book_hub_2() { +// ANCHOR: book_hub_2 +use candle::Device; +use hf_hub::api::sync::Api; +use memmap2::Mmap; +use std::fs; + +let api = Api::new().unwrap(); +let repo = api.model("bert-base-uncased".to_string()); +let weights_filename = repo.get("model.safetensors").unwrap(); + +let file = fs::File::open(weights_filename).unwrap(); +let mmap = unsafe { Mmap::map(&file).unwrap() }; +let weights = candle::safetensors::load_buffer(&mmap[..], &Device::Cpu).unwrap(); +// ANCHOR_END: book_hub_2 + assert_eq!(weights.len(), 206); + } + + #[rustfmt::skip] + #[test] + fn book_hub_3() { +// ANCHOR: book_hub_3 +use candle::{DType, Device, Tensor}; +use hf_hub::api::sync::Api; +use memmap2::Mmap; +use safetensors::slice::IndexOp; +use safetensors::SafeTensors; +use std::fs; + +let api = Api::new().unwrap(); +let repo = api.model("bert-base-uncased".to_string()); +let weights_filename = repo.get("model.safetensors").unwrap(); + +let file = fs::File::open(weights_filename).unwrap(); +let mmap = unsafe { Mmap::map(&file).unwrap() }; + +// Use safetensors directly +let tensors = SafeTensors::deserialize(&mmap[..]).unwrap(); +let view = tensors +.tensor("bert.encoder.layer.0.attention.self.query.weight") +.unwrap(); + +// We're going to load shard with rank 1, within a world_size of 4 +// We're going to split along dimension 0 doing VIEW[start..stop, :] +let rank = 1; +let world_size = 4; +let dim = 0; +let dtype = view.dtype(); +let mut tp_shape = view.shape().to_vec(); +let size = tp_shape[0]; + +if size % world_size != 0 { +panic!("The dimension is not divisble by `world_size`"); +} +let block_size = size / world_size; +let start = rank * block_size; +let stop = (rank + 1) * block_size; + +// Everything is expressed in tensor dimension +// bytes offsets is handled automatically for safetensors. + +let iterator = view.slice(start..stop).unwrap(); + +tp_shape[dim] = block_size; + +// Convert safetensors Dtype to candle DType +let dtype: DType = dtype.try_into().unwrap(); + +// TODO: Implement from_buffer_iterator to we can skip the extra CPU alloc. +let raw: Vec<u8> = iterator.into_iter().flatten().cloned().collect(); +let tp_tensor = Tensor::from_raw_buffer(&raw, dtype, &tp_shape, &Device::Cpu).unwrap(); +// ANCHOR_END: book_hub_3 + assert_eq!(view.shape(), &[768, 768]); + assert_eq!(tp_tensor.dims(), &[192, 768]); + } +} |