summaryrefslogtreecommitdiff
path: root/candle-examples/src
diff options
context:
space:
mode:
authorNicolas Patry <patry.nicolas@protonmail.com>2023-08-02 19:18:43 +0200
committerNicolas Patry <patry.nicolas@protonmail.com>2023-08-02 19:18:43 +0200
commitdba31473d40c88fed22574ba96021dc59f25f3f7 (patch)
tree5ce0c87397bd15678f7d5df4a6a9c4ab581fde99 /candle-examples/src
parent1b2b32e58d13ac96cee42562b845fcecfd3a08de (diff)
downloadcandle-dba31473d40c88fed22574ba96021dc59f25f3f7.tar.gz
candle-dba31473d40c88fed22574ba96021dc59f25f3f7.tar.bz2
candle-dba31473d40c88fed22574ba96021dc59f25f3f7.zip
Typos and format and CD only when PR lands.
Diffstat (limited to 'candle-examples/src')
-rw-r--r--candle-examples/src/lib.rs8
1 files changed, 4 insertions, 4 deletions
diff --git a/candle-examples/src/lib.rs b/candle-examples/src/lib.rs
index 3410026e..2b6009b4 100644
--- a/candle-examples/src/lib.rs
+++ b/candle-examples/src/lib.rs
@@ -73,8 +73,8 @@ let mmap = unsafe { Mmap::map(&file).unwrap() };
// Use safetensors directly
let tensors = SafeTensors::deserialize(&mmap[..]).unwrap();
let view = tensors
-.tensor("bert.encoder.layer.0.attention.self.query.weight")
-.unwrap();
+ .tensor("bert.encoder.layer.0.attention.self.query.weight")
+ .unwrap();
// We're going to load shard with rank 1, within a world_size of 4
// We're going to split along dimension 0 doing VIEW[start..stop, :]
@@ -86,7 +86,7 @@ let mut tp_shape = view.shape().to_vec();
let size = tp_shape[0];
if size % world_size != 0 {
-panic!("The dimension is not divisble by `world_size`");
+ panic!("The dimension is not divisble by `world_size`");
}
let block_size = size / world_size;
let start = rank * block_size;
@@ -102,7 +102,7 @@ tp_shape[dim] = block_size;
// Convert safetensors Dtype to candle DType
let dtype: DType = dtype.try_into().unwrap();
-// TODO: Implement from_buffer_iterator to we can skip the extra CPU alloc.
+// TODO: Implement from_buffer_iterator so we can skip the extra CPU alloc.
let raw: Vec<u8> = iterator.into_iter().flatten().cloned().collect();
let tp_tensor = Tensor::from_raw_buffer(&raw, dtype, &tp_shape, &Device::Cpu).unwrap();
// ANCHOR_END: book_hub_3