diff options
author | v-espitalier <125037408+v-espitalier@users.noreply.github.com> | 2024-06-29 11:49:15 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-06-29 11:49:15 +0200 |
commit | e27aac0a062a6de125e2984eacdb7841664e86fd (patch) | |
tree | a0752c27f75da6c7312abb2a2219d9179e89d8db /candle-examples | |
parent | a3dd87f15e3656ee2bec4820ae72a2a4e5662b40 (diff) | |
download | candle-e27aac0a062a6de125e2984eacdb7841664e86fd.tar.gz candle-e27aac0a062a6de125e2984eacdb7841664e86fd.tar.bz2 candle-e27aac0a062a6de125e2984eacdb7841664e86fd.zip |
Add DINOv2Reg4 + PlantCLEF2024 (#2293)
* Add: DINOv2Reg4 with PlantCLEF2024 weights and example ( See https://arxiv.org/abs/2309.16588 and https://zenodo.org/records/10848263 )
* Remove extra files + update README to download them + remove extra lines
* minor fix (README remove extra spaces)
* minor fix (README: Fix image url)
* Modif: Add back interpolate_pos_encoding() + fix when no interpolation + remove extra comments + Update README ( source image changed and so the predictions )
* Fix: Improve code lisibility with '$ cargo clippy' and '$ cargo fmt'
* Another clippy fix.
---------
Co-authored-by: x-VEspit <vincent.espitalier@cirad.fr>
Co-authored-by: laurent <laurent.mazare@gmail.com>
Diffstat (limited to 'candle-examples')
-rw-r--r-- | candle-examples/examples/dinov2reg4/README.md | 25 | ||||
-rw-r--r-- | candle-examples/examples/dinov2reg4/main.rs | 70 | ||||
-rw-r--r-- | candle-examples/src/imagenet.rs | 18 |
3 files changed, 113 insertions, 0 deletions
diff --git a/candle-examples/examples/dinov2reg4/README.md b/candle-examples/examples/dinov2reg4/README.md new file mode 100644 index 00000000..ac86ca69 --- /dev/null +++ b/candle-examples/examples/dinov2reg4/README.md @@ -0,0 +1,25 @@ +# candle-dinov2-reg4 + +[DINOv2-reg4](https://arxiv.org/abs/2309.16588) is the lastest version of DINOv2 with registers. +In this example, it is used as an plant species classifier: the model returns the +probability for the image to belong to each of the 7806 PlantCLEF2024 categories. + +## Running some example + +```bash +# Download classes names and a plant picture to identify +curl https://huggingface.co/vincent-espitalier/dino-v2-reg4-with-plantclef2024-weights/raw/main/species_id_mapping.txt --output candle-examples/examples/dinov2reg4/species_id_mapping.txt +curl https://bs.plantnet.org/image/o/bd2d3830ac3270218ba82fd24e2290becd01317c --output candle-examples/examples/dinov2reg4/bd2d3830ac3270218ba82fd24e2290becd01317c.jpg + +# Perform inference +cargo run --example dinov2reg4 --release -- --image candle-examples/examples/dinov2reg4/bd2d3830ac3270218ba82fd24e2290becd01317c.jpg + +> Orchis simia Lam. : 45.55% +> Orchis × bergonii Nanteuil: 9.80% +> Orchis italica Poir. : 9.66% +> Orchis × angusticruris Franch.: 2.76% +> Orchis × bivonae Tod. : 2.54% + +``` + + diff --git a/candle-examples/examples/dinov2reg4/main.rs b/candle-examples/examples/dinov2reg4/main.rs new file mode 100644 index 00000000..15270517 --- /dev/null +++ b/candle-examples/examples/dinov2reg4/main.rs @@ -0,0 +1,70 @@ +//! DINOv2 reg4 finetuned on PlantCLEF 2024 +//! https://arxiv.org/abs/2309.16588 +//! https://huggingface.co/spaces/BVRA/PlantCLEF2024 +//! https://zenodo.org/records/10848263 + +#[cfg(feature = "mkl")] +extern crate intel_mkl_src; + +#[cfg(feature = "accelerate")] +extern crate accelerate_src; + +use clap::Parser; + +use candle::{DType, IndexOp, D}; +use candle_nn::{Module, VarBuilder}; +use candle_transformers::models::dinov2reg4; + +#[derive(Parser)] +struct Args { + #[arg(long)] + model: Option<String>, + + #[arg(long)] + image: String, + + /// Run on CPU rather than on GPU. + #[arg(long)] + cpu: bool, +} + +pub fn main() -> anyhow::Result<()> { + let args = Args::parse(); + + let device = candle_examples::device(args.cpu)?; + + let image = candle_examples::imagenet::load_image518(args.image)?.to_device(&device)?; + println!("loaded image {image:?}"); + + let f_species_id_mapping = "candle-examples/examples/dinov2reg4/species_id_mapping.txt"; + let classes: Vec<String> = std::fs::read_to_string(f_species_id_mapping) + .expect("missing classes file") + .split('\n') + .map(|s| s.to_string()) + .collect(); + + let model_file = match args.model { + None => { + let api = hf_hub::api::sync::Api::new()?; + let api = + api.model("vincent-espitalier/dino-v2-reg4-with-plantclef2024-weights".into()); + api.get( + "vit_base_patch14_reg4_dinov2_lvd142m_pc24_onlyclassifier_then_all.safetensors", + )? + } + Some(model) => model.into(), + }; + let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; + let model = dinov2reg4::vit_base(vb)?; + println!("model built"); + let logits = model.forward(&image.unsqueeze(0)?)?; + let prs = candle_nn::ops::softmax(&logits, D::Minus1)? + .i(0)? + .to_vec1::<f32>()?; + let mut prs = prs.iter().enumerate().collect::<Vec<_>>(); + prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); + for &(category_idx, pr) in prs.iter().take(5) { + println!("{:24}: {:.2}%", classes[category_idx], 100. * pr); + } + Ok(()) +} diff --git a/candle-examples/src/imagenet.rs b/candle-examples/src/imagenet.rs index cefbd71b..781dcd4f 100644 --- a/candle-examples/src/imagenet.rs +++ b/candle-examples/src/imagenet.rs @@ -17,6 +17,24 @@ pub fn load_image224<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> { .broadcast_div(&std) } +/// Loads an image from disk using the image crate, this returns a tensor with shape +/// (3, 518, 518). imagenet normalization is applied. +/// The model dinov2 reg4 analyzes images with dimensions 3x518x518 (resulting in 37x37 transformer tokens). +pub fn load_image518<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> { + let img = image::io::Reader::open(p)? + .decode() + .map_err(candle::Error::wrap)? + .resize_to_fill(518, 518, image::imageops::FilterType::Triangle); + let img = img.to_rgb8(); + let data = img.into_raw(); + let data = Tensor::from_vec(data, (518, 518, 3), &Device::Cpu)?.permute((2, 0, 1))?; + let mean = Tensor::new(&[0.485f32, 0.456, 0.406], &Device::Cpu)?.reshape((3, 1, 1))?; + let std = Tensor::new(&[0.229f32, 0.224, 0.225], &Device::Cpu)?.reshape((3, 1, 1))?; + (data.to_dtype(candle::DType::F32)? / 255.)? + .broadcast_sub(&mean)? + .broadcast_div(&std) +} + pub const CLASS_COUNT: i64 = 1000; pub const CLASSES: [&str; 1000] = [ |