diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-08-01 19:53:41 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-08-01 19:53:41 +0100 |
commit | ff876c2103bc530f9ba3bc278c5e09148c124885 (patch) | |
tree | eb4ec2b9a112549fd21c0a42e2a3f597dada910c /candle-examples | |
parent | a27239f3d9b77ad4c300de38d43c6ad64d6b5ea6 (diff) | |
download | candle-ff876c2103bc530f9ba3bc278c5e09148c124885.tar.gz candle-ff876c2103bc530f9ba3bc278c5e09148c124885.tar.bz2 candle-ff876c2103bc530f9ba3bc278c5e09148c124885.zip |
Llama more training (#297)
* Rework the var-builder to handle initializations.
* Add some helper functions for layer creation.
* Improve the layer initializations.
* Get initialized variables.
* Precompute the rot embeddings when training lamas.
Diffstat (limited to 'candle-examples')
-rw-r--r-- | candle-examples/examples/llama2-c/model.rs | 38 | ||||
-rw-r--r-- | candle-examples/examples/llama2-c/training.rs | 6 | ||||
-rw-r--r-- | candle-examples/examples/mnist-training/main.rs | 139 |
3 files changed, 41 insertions, 142 deletions
diff --git a/candle-examples/examples/llama2-c/model.rs b/candle-examples/examples/llama2-c/model.rs index 4e7015dd..77900d27 100644 --- a/candle-examples/examples/llama2-c/model.rs +++ b/candle-examples/examples/llama2-c/model.rs @@ -1,5 +1,6 @@ use candle::{DType, Device, IndexOp, Result, Tensor, D}; -use candle_nn::{Embedding, Linear, VarBuilder}; +use candle_nn::linear_no_bias as linear; +use candle_nn::{embedding, Embedding, Linear, VarBuilder}; use std::collections::HashMap; use std::sync::{Arc, Mutex}; @@ -43,8 +44,25 @@ pub struct Cache { impl Cache { pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> { - let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?; - let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?; + let n_elem = cfg.dim / cfg.n_heads; + let theta: Vec<_> = (0..n_elem) + .step_by(2) + .map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32)) + .collect(); + let theta = Tensor::new(theta.as_slice(), vb.device())?; + let idx_theta = Tensor::arange(0, cfg.seq_len as u32, vb.device())? + .to_dtype(DType::F32)? + .reshape((cfg.seq_len, 1))? + .matmul(&theta.reshape((1, theta.elem_count()))?)?; + let precomputed_cos = idx_theta.cos()?; + let precomputed_sin = idx_theta.sin()?; + + let freq_cis_real = vb + .get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real") + .unwrap_or(precomputed_cos); + let freq_cis_imag = vb + .get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag") + .unwrap_or(precomputed_sin); let cos = freq_cis_real.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?; let sin = freq_cis_imag.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?; Ok(Self { @@ -76,16 +94,6 @@ fn silu(xs: &Tensor) -> Result<Tensor> { xs / (xs.neg()?.exp()? + 1.0)? } -fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> { - let weight = vb.get((size2, size1), "weight")?; - Ok(Linear::new(weight, None)) -} - -fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> { - let embeddings = vb.get((cfg.vocab_size, cfg.dim), "weight")?; - Ok(Embedding::new(embeddings, cfg.dim)) -} - struct RmsNorm { scale: Tensor, eps: f64, @@ -93,7 +101,7 @@ struct RmsNorm { impl RmsNorm { fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> { - let scale = vb.get(size, "weight")?; + let scale = vb.get_or_init(size, "weight", candle_nn::Init::Const(1.))?; Ok(Self { scale, eps }) } @@ -315,7 +323,7 @@ impl Llama { } pub fn load(vb: VarBuilder, cache: &Cache, cfg: Config) -> Result<Self> { - let wte = embedding(&cfg, vb.pp("model.embed_tokens"))?; + let wte = embedding(cfg.vocab_size, cfg.dim, vb.pp("model.embed_tokens"))?; let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?; let ln_f = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?; let blocks: Vec<_> = (0..cfg.n_layers) diff --git a/candle-examples/examples/llama2-c/training.rs b/candle-examples/examples/llama2-c/training.rs index 196ba9a8..92aa90e6 100644 --- a/candle-examples/examples/llama2-c/training.rs +++ b/candle-examples/examples/llama2-c/training.rs @@ -142,15 +142,15 @@ pub fn run(args: &crate::TrainingCmd, common_args: &crate::Args) -> Result<()> { dataset.train_tokens.len(), dataset.valid_tokens.len() ); - let vb = candle_nn::VarBuilder::zeros(DType::F32, &device); + let varmap = candle_nn::VarMap::new(); + let vb = candle_nn::VarBuilder::from_varmap(&varmap, DType::F32, &device); let config = Config::tiny(); let iter = DatasetRandomIter::new(&dataset, false, config.seq_len, device.clone()); let batch_iter = candle_nn::dataset::Batcher::new_r2(iter).batch_size(args.batch_size); let cache = Cache::new(false, &config, vb.pp("rot"))?; let model = Llama::load(vb, &cache, config)?; - let all_vars = vec![]; // TODO: Propagate the variables from the VarBuilder to here. - let sgd = candle_nn::SGD::new(&all_vars, args.learning_rate); + let sgd = candle_nn::SGD::new(varmap.all_vars(), args.learning_rate); for (batch_index, batch) in batch_iter.enumerate() { let (inp, tgt) = batch?; let logits = model.forward(&inp, 0)?; diff --git a/candle-examples/examples/mnist-training/main.rs b/candle-examples/examples/mnist-training/main.rs index 5bc2e99b..e251f6e9 100644 --- a/candle-examples/examples/mnist-training/main.rs +++ b/candle-examples/examples/mnist-training/main.rs @@ -4,128 +4,20 @@ extern crate intel_mkl_src; use clap::{Parser, ValueEnum}; -use candle::{DType, Device, Result, Shape, Tensor, Var, D}; -use candle_nn::{loss, ops, Init, Linear}; -use std::sync::{Arc, Mutex}; +use candle::{DType, Result, Tensor, D}; +use candle_nn::{loss, ops, Linear, VarBuilder, VarMap}; const IMAGE_DIM: usize = 784; const LABELS: usize = 10; -struct TensorData { - tensors: std::collections::HashMap<String, Var>, - pub dtype: DType, - pub device: Device, -} - -// A variant of candle_nn::VarBuilder for initializing variables before training. -#[derive(Clone)] -struct VarStore { - data: Arc<Mutex<TensorData>>, - path: Vec<String>, -} - -impl VarStore { - fn new(dtype: DType, device: Device) -> Self { - let data = TensorData { - tensors: std::collections::HashMap::new(), - dtype, - device, - }; - Self { - data: Arc::new(Mutex::new(data)), - path: vec![], - } - } - - fn pp(&self, s: &str) -> Self { - let mut path = self.path.clone(); - path.push(s.to_string()); - Self { - data: self.data.clone(), - path, - } - } - - fn get<S: Into<Shape>>(&self, shape: S, tensor_name: &str, init: Init) -> Result<Tensor> { - let shape = shape.into(); - let path = if self.path.is_empty() { - tensor_name.to_string() - } else { - [&self.path.join("."), tensor_name].join(".") - }; - let mut tensor_data = self.data.lock().unwrap(); - if let Some(tensor) = tensor_data.tensors.get(&path) { - let tensor_shape = tensor.shape(); - if &shape != tensor_shape { - candle::bail!("shape mismatch on {path}: {shape:?} <> {tensor_shape:?}") - } - return Ok(tensor.as_tensor().clone()); - } - let var = init.var(shape, tensor_data.dtype, &tensor_data.device)?; - let tensor = var.as_tensor().clone(); - tensor_data.tensors.insert(path, var); - Ok(tensor) - } - - fn all_vars(&self) -> Vec<Var> { - let tensor_data = self.data.lock().unwrap(); - #[allow(clippy::map_clone)] - tensor_data - .tensors - .values() - .map(|c| c.clone()) - .collect::<Vec<_>>() - } - - fn save<P: AsRef<std::path::Path>>(&self, path: P) -> Result<()> { - let tensor_data = self.data.lock().unwrap(); - let data = tensor_data.tensors.iter().map(|(k, v)| (k, v.as_tensor())); - safetensors::tensor::serialize_to_file(data, &None, path.as_ref())?; - Ok(()) - } - - fn load<P: AsRef<std::path::Path>>(&mut self, path: P) -> Result<()> { - use candle::safetensors::Load; - - let path = path.as_ref(); - let data = unsafe { candle::safetensors::MmapedFile::new(path)? }; - let data = data.deserialize()?; - let mut tensor_data = self.data.lock().unwrap(); - for (name, var) in tensor_data.tensors.iter_mut() { - match data.tensor(name) { - Ok(data) => { - let data: Tensor = data.load(var.device())?; - if let Err(err) = var.set(&data) { - candle::bail!("error setting {name} using data from {path:?}: {err}",) - } - } - Err(_) => candle::bail!("cannot find tensor for {name}"), - } - } - Ok(()) - } -} - -fn linear_z(in_dim: usize, out_dim: usize, vs: VarStore) -> Result<Linear> { - let ws = vs.get((out_dim, in_dim), "weight", candle_nn::init::ZERO)?; - let bs = vs.get(out_dim, "bias", candle_nn::init::ZERO)?; - Ok(Linear::new(ws, Some(bs))) -} - -fn linear(in_dim: usize, out_dim: usize, vs: VarStore) -> Result<Linear> { - let init_ws = candle_nn::init::DEFAULT_KAIMING_NORMAL; - let ws = vs.get((out_dim, in_dim), "weight", init_ws)?; - let bound = 1. / (in_dim as f64).sqrt(); - let init_bs = Init::Uniform { - lo: -bound, - up: bound, - }; - let bs = vs.get(out_dim, "bias", init_bs)?; +fn linear_z(in_dim: usize, out_dim: usize, vs: VarBuilder) -> Result<Linear> { + let ws = vs.get_or_init((out_dim, in_dim), "weight", candle_nn::init::ZERO)?; + let bs = vs.get_or_init(out_dim, "bias", candle_nn::init::ZERO)?; Ok(Linear::new(ws, Some(bs))) } trait Model: Sized { - fn new(vs: VarStore) -> Result<Self>; + fn new(vs: VarBuilder) -> Result<Self>; fn forward(&self, xs: &Tensor) -> Result<Tensor>; } @@ -134,7 +26,7 @@ struct LinearModel { } impl Model for LinearModel { - fn new(vs: VarStore) -> Result<Self> { + fn new(vs: VarBuilder) -> Result<Self> { let linear = linear_z(IMAGE_DIM, LABELS, vs)?; Ok(Self { linear }) } @@ -150,9 +42,9 @@ struct Mlp { } impl Model for Mlp { - fn new(vs: VarStore) -> Result<Self> { - let ln1 = linear(IMAGE_DIM, 100, vs.pp("ln1"))?; - let ln2 = linear(100, LABELS, vs.pp("ln2"))?; + fn new(vs: VarBuilder) -> Result<Self> { + let ln1 = candle_nn::linear(IMAGE_DIM, 100, vs.pp("ln1"))?; + let ln2 = candle_nn::linear(100, LABELS, vs.pp("ln2"))?; Ok(Self { ln1, ln2 }) } @@ -180,17 +72,16 @@ fn training_loop<M: Model>( let train_images = m.train_images.to_device(&dev)?; let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?; - let mut vs = VarStore::new(DType::F32, dev.clone()); + let mut varmap = VarMap::new(); + let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev); let model = M::new(vs.clone())?; if let Some(load) = &args.load { println!("loading weights from {load}"); - vs.load(load)? + varmap.load(load)? } - let all_vars = vs.all_vars(); - let all_vars = all_vars.iter().collect::<Vec<_>>(); - let sgd = candle_nn::SGD::new(&all_vars, args.learning_rate); + let sgd = candle_nn::SGD::new(varmap.all_vars(), args.learning_rate); let test_images = m.test_images.to_device(&dev)?; let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?; for epoch in 1..args.epochs { @@ -215,7 +106,7 @@ fn training_loop<M: Model>( } if let Some(save) = &args.save { println!("saving trained weights in {save}"); - vs.save(save)? + varmap.save(save)? } Ok(()) } |