diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-07-26 07:48:10 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-07-26 07:48:10 +0100 |
commit | d9f9c859afaeed95df420aca5fdb73f52f9239c5 (patch) | |
tree | 2ef898b2906a24b57ea42b0294bc51b928f0513c /candle-flash-attn/kernels/softmax.h | |
parent | c97d51243c177e0497ea7147f426c4cc1e532c9b (diff) | |
download | candle-d9f9c859afaeed95df420aca5fdb73f52f9239c5.tar.gz candle-d9f9c859afaeed95df420aca5fdb73f52f9239c5.tar.bz2 candle-d9f9c859afaeed95df420aca5fdb73f52f9239c5.zip |
Add flash attention (#241)
* Add some flash-attn kernel, import the code for flash-attn v2 from Dao-AILab.
* More flash attn.
* Set up the flash attn parameters.
* Get things to compile locally.
* Move the flash attention files in a different directory.
* Build the static C library with nvcc.
* Add more flash attention.
* Update the build part.
* Better caching.
* Exclude flash attention from the default workspace.
* Put flash-attn behind a feature gate.
* Get the flash attn kernel to run.
* Move the flags to a more appropriate place.
* Enable flash attention in llama.
* Use flash attention in llama.
Diffstat (limited to 'candle-flash-attn/kernels/softmax.h')
-rw-r--r-- | candle-flash-attn/kernels/softmax.h | 272 |
1 files changed, 272 insertions, 0 deletions
diff --git a/candle-flash-attn/kernels/softmax.h b/candle-flash-attn/kernels/softmax.h new file mode 100644 index 00000000..3e9a7b45 --- /dev/null +++ b/candle-flash-attn/kernels/softmax.h @@ -0,0 +1,272 @@ +/****************************************************************************** + * Copyright (c) 2023, Tri Dao. + ******************************************************************************/ + +#pragma once + +#include <cmath> + +#include <cute/tensor.hpp> + +#include <cutlass/cutlass.h> +#include <cutlass/array.h> + +#include "philox.cuh" +#include "utils.h" + +namespace flash { + +using namespace cute; + +//////////////////////////////////////////////////////////////////////////////////////////////////// + +template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator> +__device__ inline void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) { + static_assert(Layout0::rank == 2, "Only support 2D Tensor"); + static_assert(Layout1::rank == 1, "Only support 1D Tensor"); + CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor)); + #pragma unroll + for (int mi = 0; mi < size<0>(tensor); mi++) { + summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0)); + #pragma unroll + for (int ni = 1; ni < size<1>(tensor); ni++) { + summary(mi) = op(summary(mi), tensor(mi, ni)); + } + } +} + +template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator> +__device__ inline void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) { + CUTE_STATIC_ASSERT_V(size(dst) == size(src)); + #pragma unroll + for (int i = 0; i < size(dst); i++){ + dst(i) = Allreduce<4>::run(src(i), op); + } +} + +template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator> +__device__ inline void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) { + thread_reduce_<zero_init>(tensor, summary, op); + quad_allreduce_(summary, summary, op); +} + +template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1> +__device__ inline void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){ + MaxOp<float> max_op; + reduce_<zero_init>(tensor, max, max_op); +} + +template<typename Engine0, typename Layout0, typename Engine1, typename Layout1> +__device__ inline void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){ + SumOp<float> sum_op; + reduce_(tensor, sum, sum_op); +} + +// Apply the exp to all the elements. +template <bool Scale_max=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1> +inline __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) { + static_assert(Layout0::rank == 2, "Only support 2D Tensor"); + static_assert(Layout1::rank == 1, "Only support 1D Tensor"); + CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor)); + #pragma unroll + for (int mi = 0; mi < size<0>(tensor); ++mi) { + // If max is -inf, then all elements must have been -inf (possibly due to masking). + // We don't want (-inf - (-inf)) since that would give NaN. + // If we don't have float around M_LOG2E the multiplication is done in fp64. + const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E)); + #pragma unroll + for (int ni = 0; ni < size<1>(tensor); ++ni) { + // Instead of computing exp(x - max), we compute exp2(x * log_2(e) - + // max * log_2(e)) This allows the compiler to use the ffma + // instruction instead of fadd and fmul separately. + tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled); + } + } +} + +// Apply the exp to all the elements. +template <bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1> +inline __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) { + static_assert(Layout0::rank == 2, "Only support 2D Tensor"); + static_assert(Layout1::rank == 1, "Only support 1D Tensor"); + CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor)); + #pragma unroll + for (int mi = 0; mi < size<0>(tensor); ++mi) { + MaxOp<float> max_op; + max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0)); + #pragma unroll + for (int ni = 1; ni < size<1>(tensor); ni++) { + max(mi) = max_op(max(mi), tensor(mi, ni)); + } + max(mi) = Allreduce<4>::run(max(mi), max_op); + // If max is -inf, then all elements must have been -inf (possibly due to masking). + // We don't want (-inf - (-inf)) since that would give NaN. + const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale; + sum(mi) = 0; + #pragma unroll + for (int ni = 0; ni < size<1>(tensor); ++ni) { + // Instead of computing exp(x - max), we compute exp2(x * log_2(e) - + // max * log_2(e)) This allows the compiler to use the ffma + // instruction instead of fadd and fmul separately. + tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled); + sum(mi) += tensor(mi, ni); + } + SumOp<float> sum_op; + sum(mi) = Allreduce<4>::run(sum(mi), sum_op); + } +} + +template <typename Engine, typename Layout> +inline __device__ void apply_mask(Tensor<Engine, Layout> &tensor, const uint32_t max_seqlen_k) { + // tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) + static_assert(Layout::rank == 2, "Only support 2D Tensor"); + const uint32_t lane_id = threadIdx.x % 32; + #pragma unroll + for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { + #pragma unroll + for (int j = 0; j < size<1, 0>(tensor); ++j) { + const uint32_t col_idx = nj * 8 + j + (lane_id % 4) * 2; + if (col_idx >= max_seqlen_k) { + // Without the "make_coord" we get wrong results + #pragma unroll + for (int mi = 0; mi < size<0>(tensor); ++mi) { + tensor(mi, make_coord(j, nj)) = -INFINITY; + } + } + } + } +} + +template <typename Engine, typename Layout> +inline __device__ void apply_mask_causal(Tensor<Engine, Layout> &tensor, const uint32_t col_idx_offset_, + const uint32_t max_seqlen_k, const uint32_t row_idx_offset_, + const uint32_t warp_row_stride) { + // tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) + static_assert(Layout::rank == 2, "Only support 2D Tensor"); + const uint32_t lane_id = threadIdx.x % 32; + // const uint32_t row_idx_offset = row_idx_offset_ + lane_id / 4; + const uint32_t row_idx_offset = row_idx_offset_; + const uint32_t col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2; + #pragma unroll + for (int mi = 0; mi < size<0, 1>(tensor); ++mi) { + const uint32_t row_idx_base = row_idx_offset + mi * warp_row_stride; + #pragma unroll + for (int i = 0; i < size<0, 0>(tensor); ++i) { + const uint32_t row_idx = row_idx_base + i * 8; + const uint32_t col_idx_limit = std::min(max_seqlen_k, row_idx + 1); + #pragma unroll + for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { + const uint32_t col_idx_base = col_idx_offset + nj * 8; + #pragma unroll + for (int j = 0; j < size<1, 0>(tensor); ++j) { + const uint32_t col_idx = col_idx_base + j; + if (col_idx >= col_idx_limit) { + tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY; + } + } + } + // if (cute::thread0()) { + // printf("mi = %d, i = %d, row_idx = %d, max_seqlen_k = %d\n", mi, i, row_idx, max_seqlen_k); + // print(tensor(make_coord(i, mi), _)); + // // print(tensor(_, j + nj * size<1, 0>(tensor))); + // } + } + } +} + +template <typename Engine0, typename Layout0, typename Engine1, typename Layout1> +inline __device__ void apply_mask_causal_w_idx( + Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &idx_rowcol, + const uint32_t col_idx_offset_, const uint32_t max_seqlen_k, const uint32_t row_idx_offset_) +{ + // tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) + static_assert(Layout0::rank == 2, "Only support 2D Tensor"); + static_assert(Layout1::rank == 2, "Only support 2D Tensor"); + CUTE_STATIC_ASSERT_V(size<0>(tensor) == size<0>(idx_rowcol)); + CUTE_STATIC_ASSERT_V(size<1>(tensor) == size<1>(idx_rowcol)); + #pragma unroll + for (int mi = 0; mi < size<0>(tensor); ++mi) { + const uint32_t col_idx_limit = std::min(max_seqlen_k, 1 + row_idx_offset_ + get<0>(idx_rowcol(mi, 0))); + #pragma unroll + for (int ni = 0; ni < size<1, 1>(tensor); ++ni) { + if (col_idx_offset_ + get<1>(idx_rowcol(0, ni)) >= col_idx_limit) { + tensor(mi, ni) = -INFINITY; + } + } + // if (cute::thread0()) { + // printf("ni = %d, j = %d, col_idx = %d, max_seqlen_k = %d\n", ni, j, col_idx, max_seqlen_k); + // print(tensor(_, make_coord(j, ni))); + // // print(tensor(_, j + ni * size<1, 0>(tensor))); + // } + } +} + +template <bool encode_dropout_in_sign_bit=false, typename Engine, typename Layout> +inline __device__ void apply_dropout(Tensor<Engine, Layout> &tensor, uint8_t p_dropout_in_uint8_t, + unsigned long long seed, unsigned long long offset, + uint32_t block_row_start, uint32_t block_col_start, + uint32_t block_row_stride) { + // tensor has shape (8, MMA_M, MMA_N / 2) + using T = typename Engine::value_type; + auto encode_dropout = [](bool keep, T val) { + return keep ? val : (encode_dropout_in_sign_bit ? -val : T(0)); + }; + static_assert(decltype(size<2>(tensor))::value % 2 == 0); + const uint16_t p_dropout_8bit_in_uint16_t = uint16_t(p_dropout_in_uint8_t); + const uint32_t p_dropout_8bit_in_uint32_t = (uint32_t(p_dropout_8bit_in_uint16_t) << 16) | uint32_t(p_dropout_8bit_in_uint16_t); + // if (cute::thread0()) { printf("threshold2 = 0x%x\n", p_dropout_8bit_in_uint32_t); } + #pragma unroll + for (int m = 0; m < size<1>(tensor); ++m, block_row_start += block_row_stride) { + uint2 rowcol = make_uint2(block_row_start, block_col_start); + #pragma unroll + for (int n = 0; n < size<2>(tensor) / 2; ++n, ++rowcol.y) { + // if (cute::thread(32, 0)) { printf("m = %d, n = %d, row = %d, col = %d\n", m, n, int(rowcol.x), int(rowcol.y));} + uint4 random_uint4 = flash::philox(seed, reinterpret_cast<unsigned long long&>(rowcol), offset); + // if (cute::thread0()) { printf("philox = %u, %d, %d, %d\n", random_uint4.x, random_uint4.y, random_uint4.z, random_uint4.w);} + uint8_t (&rnd_8)[16] = reinterpret_cast<uint8_t (&)[16]>(random_uint4); + // Special implementation for 16-bit types: we duplicate the threshold to the + // low and high 16 bits of a 32-bit value, then use the f16x2 comparison instruction + // to get a mask. The low 16 bits of the mask will be either 0xffff or 0x0000, + // and the high 16 bits will be either 0xffff or 0x0000, depending on whether + // the random value is less than the threshold. + // We then do a bit-wise AND between the mask and the original value (in 32-bit). + // We're exploiting the fact that floating point comparison is equivalent to integer + // comparison, since we're comparing unsigned integers whose top 8-bits are zero. + if (!encode_dropout_in_sign_bit + && (std::is_same<T, cutlass::half_t>::value || std::is_same<T, cutlass::bfloat16_t>::value)) { + uint16_t rnd_16[16]; + #pragma unroll + for (int i = 0; i < 16; i++) { rnd_16[i] = uint16_t(rnd_8[i]); } + uint32_t (&rnd_32)[8] = reinterpret_cast<uint32_t (&)[8]>(rnd_16); + #pragma unroll + for (int j = 0; j < 2; j++) { + Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j)); + // if (cute::thread0()) { printf("random = 0x%x, 0x%x, 0x%x, 0x%x\n", rnd_32[j * 4 + 0], rnd_32[j * 4 + 1], rnd_32[j * 4 + 2], rnd_32[j * 4 + 3]); } + // if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); } + #pragma unroll + for (int i = 0; i < 4; i++) { + uint32_t mask; + asm volatile("set.le.u32.f16x2 %0, %1, %2;\n" : "=r"(mask) : "r"(rnd_32[j * 4 + i]), "r"(p_dropout_8bit_in_uint32_t)); + tensor_uint32(i) &= mask; + } + // if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); } + } + } else { + #pragma unroll + for (int j = 0; j < 2; j++) { + #pragma unroll + for (int i = 0; i < 8; i++) { + tensor(i, m, n * 2 + j) = encode_dropout(rnd_8[j * 8 + i] <= p_dropout_in_uint8_t, tensor(i, m, n * 2 + j)); + } + Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j)); + // if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); } + } + } + // // if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0)) { + // // printf("n = %d, ph Philox: %u, %u, %u, %u\n", n, rnd_8.x, rnd_8.y, rnd_8.z, rnd_8.w); + // // } + } + } +} + +} // namespace flash |