diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-07-26 20:56:00 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-07-26 20:56:00 +0100 |
commit | 4f92420132d831e5d344f974c263c9f341e50906 (patch) | |
tree | a43610e4869d0d814248e6cbcdd4242dc85eadf9 /candle-flash-attn/tests | |
parent | ded197497c48485aa6b00c45318db7cf7e7cdf96 (diff) | |
download | candle-4f92420132d831e5d344f974c263c9f341e50906.tar.gz candle-4f92420132d831e5d344f974c263c9f341e50906.tar.bz2 candle-4f92420132d831e5d344f974c263c9f341e50906.zip |
Add some flash attn test (#253)
* Add some flash-attn test.
* Add the cpu test.
* Fail when the head is not a multiple of 8.
* Polish the flash attention test.
Diffstat (limited to 'candle-flash-attn/tests')
-rw-r--r-- | candle-flash-attn/tests/flash_attn_tests.rs | 90 |
1 files changed, 90 insertions, 0 deletions
diff --git a/candle-flash-attn/tests/flash_attn_tests.rs b/candle-flash-attn/tests/flash_attn_tests.rs new file mode 100644 index 00000000..c6780659 --- /dev/null +++ b/candle-flash-attn/tests/flash_attn_tests.rs @@ -0,0 +1,90 @@ +use anyhow::Result; +use candle::{DType, Device, IndexOp, Tensor, D}; + +fn to_vec3_round(t: Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> { + let b = 10f32.powi(digits); + let t = t.to_vec3::<f32>()?; + let t = t + .iter() + .map(|t| { + t.iter() + .map(|t| t.iter().map(|t| f32::round(t * b) / b).collect()) + .collect() + }) + .collect(); + Ok(t) +} + +fn fa_acausal(q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32) -> Result<Tensor> { + let in_dtype = q.dtype(); + let q = q.to_dtype(DType::F32)?; + let k = k.to_dtype(DType::F32)?; + let v = v.to_dtype(DType::F32)?; + let att = (q.matmul(&k.t()?)? * softmax_scale as f64)?; + let att = att.softmax(D::Minus1)?; + // Convert to contiguous as matmul doesn't support strided vs for now. + let output = att.matmul(&v.contiguous()?)?.to_dtype(in_dtype)?; + Ok(output) +} + +#[test] +fn flash_attn_acausal() -> Result<()> { + let device = Device::new_cuda(0)?; + let q = Tensor::arange(0u32, 48, &device)? + .to_dtype(DType::F16)? + .reshape((1, 3, 2, 8))?; + let k = (&q / 40.)?; + let v = (&q / 50.)?; + let q = (&q / 30.)?; + + let ys1 = fa_acausal(&q, &k, &v, 0.5)?; + let ys1 = ys1.i(0)?.to_dtype(DType::F32)?; + let ys2 = { + let q = q.transpose(1, 2)?; + let k = k.transpose(1, 2)?; + let v = v.transpose(1, 2)?; + candle_flash_attn::flash_attn(&q, &k, &v, 0.5, false)?.transpose(1, 2)? + }; + let ys2 = ys2.i(0)?.to_dtype(DType::F32)?; + let diff = ys1.sub(&ys2)?.abs()?.flatten_all()?.max(0)?; + + assert_eq!(ys1.dims(), &[3, 2, 8]); + assert_eq!( + to_vec3_round(ys1, 4)?, + &[ + [ + [0.0837, 0.1038, 0.1238, 0.1438, 0.1637, 0.1837, 0.2037, 0.2238], + [0.0922, 0.1122, 0.1322, 0.1522, 0.1721, 0.1921, 0.2122, 0.2322] + ], + [ + [0.4204, 0.4404, 0.4604, 0.4805, 0.5005, 0.5205, 0.5405, 0.5605], + [0.428, 0.448, 0.468, 0.488, 0.5083, 0.5283, 0.5483, 0.5684] + ], + [ + [0.7554, 0.7754, 0.7954, 0.8154, 0.8354, 0.8555, 0.8755, 0.8955], + [0.7622, 0.7822, 0.8022, 0.8223, 0.8423, 0.8623, 0.8823, 0.9023] + ] + ] + ); + + assert_eq!(ys2.dims(), &[3, 2, 8]); + assert_eq!( + to_vec3_round(ys2, 4)?, + &[ + [ + [0.0837, 0.1038, 0.1238, 0.1438, 0.1637, 0.1837, 0.2037, 0.2238], + [0.0922, 0.1122, 0.1322, 0.1522, 0.1721, 0.1921, 0.2122, 0.2322] + ], + [ + [0.4204, 0.4404, 0.4604, 0.4805, 0.5005, 0.5205, 0.5405, 0.5605], + [0.428, 0.448, 0.468, 0.488, 0.5083, 0.5283, 0.5483, 0.5684] + ], + [ + [0.7554, 0.7754, 0.7954, 0.8154, 0.8354, 0.8555, 0.8755, 0.8955], + [0.7622, 0.7822, 0.8022, 0.8223, 0.8423, 0.8623, 0.8823, 0.9023] + ] + ] + ); + assert!(diff.to_vec0::<f32>()?.abs() < 1e-5); + Ok(()) +} |