summaryrefslogtreecommitdiff
path: root/candle-flash-attn
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-07-31 09:45:39 +0100
committerGitHub <noreply@github.com>2023-07-31 09:45:39 +0100
commit0ace420e66b86fd6146a02fe9b8aca6a41c0eabd (patch)
tree76c842b732503b41f86b23b3b9aea98f959bc2b4 /candle-flash-attn
parenta8d8f9f20601b30124d1c5096e3ad276afc99bf8 (diff)
downloadcandle-0ace420e66b86fd6146a02fe9b8aca6a41c0eabd.tar.gz
candle-0ace420e66b86fd6146a02fe9b8aca6a41c0eabd.tar.bz2
candle-0ace420e66b86fd6146a02fe9b8aca6a41c0eabd.zip
Flash attention without padding (varlen). (#281)
* Expose the seqlen variable for flash-attn without padding. * Fix the batched call. * Adapt for the varlen variant. * No need to set the batch strides when in varlen mode. * Add a test (disabled at the moment). * Get the test to work properly.
Diffstat (limited to 'candle-flash-attn')
-rw-r--r--candle-flash-attn/kernels/flash_api.cu9
-rw-r--r--candle-flash-attn/src/ffi.rs2
-rw-r--r--candle-flash-attn/src/lib.rs231
-rw-r--r--candle-flash-attn/tests/flash_attn_tests.rs45
4 files changed, 283 insertions, 4 deletions
diff --git a/candle-flash-attn/kernels/flash_api.cu b/candle-flash-attn/kernels/flash_api.cu
index 323aeaad..d928bcb6 100644
--- a/candle-flash-attn/kernels/flash_api.cu
+++ b/candle-flash-attn/kernels/flash_api.cu
@@ -22,6 +22,9 @@ extern "C" void run_mha(
void *o_ptr,
void *softmax_lse_ptr,
+ int32_t *cu_seqlens_q_ptr,
+ int32_t *cu_seqlens_k_ptr,
+
uint32_t q_batch_stride,
uint32_t k_batch_stride,
uint32_t v_batch_stride,
@@ -100,9 +103,9 @@ extern "C" void run_mha(
params.rp_dropout = 1.f / params.p_dropout;
params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax;
params.is_bf16 = 0;
- params.cu_seqlens_q = nullptr;
- params.cu_seqlens_k = nullptr;
- params.p_ptr = nullptr;
+ params.cu_seqlens_q = cu_seqlens_q_ptr;
+ params.cu_seqlens_k = cu_seqlens_k_ptr;
+ params.p_ptr = nullptr; // used for `return_softmax`.
cudaStream_t stream = 0; // Use the default stream.
run_mha_fwd(params, stream);
diff --git a/candle-flash-attn/src/ffi.rs b/candle-flash-attn/src/ffi.rs
index f4415539..ae61c405 100644
--- a/candle-flash-attn/src/ffi.rs
+++ b/candle-flash-attn/src/ffi.rs
@@ -7,6 +7,8 @@ extern "C" {
v_ptr: *const c_void,
o_ptr: *const c_void,
softmax_lse_ptr: *const c_void,
+ cu_seqlens_q_ptr: *const i32,
+ cu_seqlens_k_ptr: *const i32,
q_batch_stride: u32,
k_batch_stride: u32,
diff --git a/candle-flash-attn/src/lib.rs b/candle-flash-attn/src/lib.rs
index efdefee9..99b05229 100644
--- a/candle-flash-attn/src/lib.rs
+++ b/candle-flash-attn/src/lib.rs
@@ -49,6 +49,9 @@ impl candle::CustomOp3 for FlashAttn {
let q = q.as_cuda_slice::<f16>()?;
let k = k.as_cuda_slice::<f16>()?;
let v = v.as_cuda_slice::<f16>()?;
+ let q = q.slice(q_l.start_offset()..);
+ let k = k.slice(k_l.start_offset()..);
+ let v = v.slice(v_l.start_offset()..);
let q_stride = q_l.stride();
let k_stride = k_l.stride();
@@ -118,6 +121,8 @@ impl candle::CustomOp3 for FlashAttn {
v_ptr,
dst_ptr,
softmax_lse_ptr,
+ /* cu_seqlens_q_ptr */ std::ptr::null(),
+ /* cu_seqlens_k_ptr */ std::ptr::null(),
/* q_batch_stride */ q_stride[0] as u32,
/* k_batch_stride */ k_stride[0] as u32,
/* v_batch_stride */ v_stride[0] as u32,
@@ -149,7 +154,7 @@ impl candle::CustomOp3 for FlashAttn {
}
}
-/// Flash-attention v2 layer using flash-attention.
+/// Flash-attention v2 layer.
///
/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
@@ -175,3 +180,227 @@ pub fn flash_attn(
};
q.custom_op3(k, v, op)
}
+
+struct FlashAttnVarLen {
+ softmax_scale: f32,
+ causal: bool,
+ max_seqlen_q: usize,
+ max_seqlen_k: usize,
+ seqlens_q: Tensor,
+ seqlens_k: Tensor,
+}
+
+impl candle::CustomOp3 for FlashAttnVarLen {
+ fn name(&self) -> &'static str {
+ "flash-hdim32-sm80"
+ }
+
+ fn cpu_fwd(
+ &self,
+ _: &CpuStorage,
+ _: &Layout,
+ _: &CpuStorage,
+ _: &Layout,
+ _: &CpuStorage,
+ _: &Layout,
+ ) -> Result<(CpuStorage, Shape)> {
+ candle::bail!("no cpu support for flash-attn")
+ }
+
+ fn cuda_fwd(
+ &self,
+ q: &candle::CudaStorage,
+ q_l: &Layout,
+ k: &candle::CudaStorage,
+ k_l: &Layout,
+ v: &candle::CudaStorage,
+ v_l: &Layout,
+ ) -> Result<(candle::CudaStorage, Shape)> {
+ // https://github.com/Dao-AILab/flash-attention/blob/184b992dcb2a0890adaa19eb9b541c3e4f9d2a08/csrc/flash_attn/flash_api.cpp#L327
+ let dev = q.device();
+ let out_shape = q_l.shape().clone();
+ let out_l = Layout::contiguous(&out_shape);
+
+ let (seqlens_q, seqlens_q_layout) = self.seqlens_q.storage_and_layout();
+ let seqlens_q = match &*seqlens_q {
+ candle::Storage::Cpu(_) => candle::bail!("seqlens_q must be a cuda tensor"),
+ candle::Storage::Cuda(c) => c.as_cuda_slice::<u32>()?, // Should be i32!
+ };
+ let seqlens_q = match seqlens_q_layout.contiguous_offsets() {
+ Some((o1, o2)) => seqlens_q.slice(o1..o2),
+ None => candle::bail!("seqlens_q has to be contiguous"),
+ };
+
+ let (seqlens_k, seqlens_k_layout) = self.seqlens_k.storage_and_layout();
+ let seqlens_k = match &*seqlens_k {
+ candle::Storage::Cpu(_) => candle::bail!("seqlens_k must be a cuda tensor"),
+ candle::Storage::Cuda(c) => c.as_cuda_slice::<u32>()?, // Should be i32!
+ };
+ let seqlens_k = match seqlens_k_layout.contiguous_offsets() {
+ Some((o1, o2)) => seqlens_k.slice(o1..o2),
+ None => candle::bail!("seqlens_k has to be contiguous"),
+ };
+
+ let q = q.as_cuda_slice::<f16>()?;
+ let k = k.as_cuda_slice::<f16>()?;
+ let v = v.as_cuda_slice::<f16>()?;
+ let q = q.slice(q_l.start_offset()..);
+ let k = k.slice(k_l.start_offset()..);
+ let v = v.slice(v_l.start_offset()..);
+
+ let q_stride = q_l.stride();
+ let k_stride = k_l.stride();
+ let v_stride = v_l.stride();
+ let o_stride = out_l.stride();
+
+ let q_rank = q_stride.len();
+ let k_rank = k_stride.len();
+ let v_rank = v_stride.len();
+ let o_rank = o_stride.len();
+
+ if q_rank != 3 || k_rank != 3 || v_rank != 3 {
+ candle::bail!(
+ "flash-attn-varlen expects input tensors of rank 3 (q: {q_rank}, k: {k_rank}, v: {v_rank}"
+ )
+ }
+ if q_stride[q_rank - 1] != 1 {
+ candle::bail!("the last dim of q must be contiguous {q_stride:?}")
+ }
+ if k_stride[k_rank - 1] != 1 {
+ candle::bail!("the last dim of k must be contiguous {k_stride:?}")
+ }
+ if v_stride[v_rank - 1] != 1 {
+ candle::bail!("the last dim of v must be contiguous {v_stride:?}")
+ }
+
+ let (_total_q, num_heads, head_size_og) = q_l.shape().dims3()?;
+ let (total_k, num_heads_k, _head_size_og) = k_l.shape().dims3()?;
+ let expected_kv = (total_k, num_heads_k, head_size_og);
+ if expected_kv != k_l.shape().dims3()? {
+ candle::bail!("shape mismatch q {:?} and k {:?}", q_l.shape(), k_l.shape())
+ }
+ if expected_kv != v_l.shape().dims3()? {
+ candle::bail!("shape mismatch q {:?} and v {:?}", q_l.shape(), v_l.shape())
+ }
+ if head_size_og > 256 {
+ candle::bail!("only supports head dimension at most 256 (got {head_size_og})")
+ }
+ if head_size_og % 8 != 0 {
+ // TODO: Handle head sizes that are not a multiple of 8 via some padding.
+ candle::bail!("only supports head sizes that are a multiple of 8 (got {head_size_og})")
+ }
+ if num_heads % num_heads_k != 0 {
+ candle::bail!("number of k/v heads {num_heads_k} must divide number of heads in query {num_heads}")
+ }
+
+ let nseqlens_q = seqlens_q_layout.shape().dims1()?;
+ if nseqlens_q < 2 {
+ candle::bail!("seqlens_q should have a len >= 2 {nseqlens_q}")
+ }
+ let nseqlens_k = seqlens_k_layout.shape().dims1()?;
+ if nseqlens_k != nseqlens_q {
+ candle::bail!("seqlens_q and seqlens_k should have the same number of elements {nseqlens_q} <> {nseqlens_k}")
+ }
+ let batch_size = nseqlens_q - 1;
+ let head_size = round_multiple(head_size_og, 8);
+ let head_size_rounded = round_multiple(head_size, 32);
+ let seqlen_q_rounded = round_multiple(self.max_seqlen_q, 128);
+ let seqlen_k_rounded = round_multiple(self.max_seqlen_k, 128);
+
+ let elem_count = out_shape.elem_count();
+ let dst = unsafe { dev.alloc::<f16>(elem_count) }.w()?;
+ let softmax_lse = dev
+ .alloc_zeros::<f32>(batch_size * num_heads * self.max_seqlen_q)
+ .w()?;
+
+ let causal = if self.causal { 1 } else { 0 };
+
+ unsafe {
+ let q_ptr = *q.device_ptr() as *const core::ffi::c_void;
+ let k_ptr = *k.device_ptr() as *const core::ffi::c_void;
+ let v_ptr = *v.device_ptr() as *const core::ffi::c_void;
+ let dst_ptr = *dst.device_ptr() as *const core::ffi::c_void;
+ let softmax_lse_ptr = *softmax_lse.device_ptr() as *const core::ffi::c_void;
+ let seqlens_q_ptr = *seqlens_q.device_ptr() as *const core::ffi::c_int;
+ let seqlens_k_ptr = *seqlens_k.device_ptr() as *const core::ffi::c_int;
+ ffi::run_mha(
+ q_ptr,
+ k_ptr,
+ v_ptr,
+ dst_ptr,
+ softmax_lse_ptr,
+ /* cu_seqlens_q_ptr */ seqlens_q_ptr,
+ /* cu_seqlens_k_ptr */ seqlens_k_ptr,
+ /* q_batch_stride */ 0,
+ /* k_batch_stride */ 0,
+ /* v_batch_stride */ 0,
+ /* o_batch_stride */ 0,
+ /* q_row_stride */ q_stride[q_rank - 3] as u32,
+ /* k_row_stride */ k_stride[k_rank - 3] as u32,
+ /* v_row_stride */ v_stride[v_rank - 3] as u32,
+ /* o_row_stride */ o_stride[o_rank - 3] as u32,
+ /* q_head_stride */ q_stride[q_rank - 2] as u32,
+ /* k_head_stride */ k_stride[k_rank - 2] as u32,
+ /* v_head_stride */ v_stride[v_rank - 2] as u32,
+ /* o_head_stride */ o_stride[o_rank - 2] as u32,
+ /* b */ batch_size as u32,
+ /* h */ num_heads as u32,
+ /* h_k */ num_heads_k as u32,
+ /* d */ head_size as u32,
+ /* d_rounded */ head_size_rounded as u32,
+ /* softmax_scale*/ self.softmax_scale,
+ /* seqlen_q */ self.max_seqlen_q as u32,
+ /* seqlen_k */ self.max_seqlen_k as u32,
+ /* seqlen_q_rounded */ seqlen_q_rounded as u32,
+ /* seqlen_k_rounded */ seqlen_k_rounded as u32,
+ /* is_causal */ causal,
+ )
+ }
+
+ let dst = candle::CudaStorage::wrap_cuda_slice(dst, dev.clone());
+ Ok((dst, out_shape))
+ }
+}
+
+#[allow(clippy::too_many_arguments)]
+/// Flash-attention v2 layer with variable-length batching.
+///
+/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
+/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
+/// than q, the number of heads in k and v has to be divisible by the number of heads in q.
+///
+/// # Arguments
+///
+/// * `q` - Query tensor with shape `(total_q, num_heads_q, head_size)`.
+/// * `k` - Key tensor with shape `(total_kv, num_heads_kv, head_size)`.
+/// * `v` - Value tensor with shape `(total_kv, num_heads_kv, head_size)`.
+/// * `seqlens_q` - The cumulative lengths of the sequences in the batch, used to index in q.
+/// * `seqlens_k` - The cumulative lengths of the sequences in the batch, used to index in k and v.
+/// * `max_seqlen_q` - The maximum query sequence length for q in the batch.
+/// * `max_seqlen_k` - The maximum query sequence length for k and v in the batch.
+///
+/// `seqlens_q` and `seqlens_k` contain `batch_size + 1` elements, typically `0`, `seqlen_1`,
+/// `seqlen_1 + seqlen_2`, etc.
+///
+/// The resulting tensor has dimensions `(total_q, num_heads_q, head_size)`.
+pub fn flash_attn_varlen(
+ q: &Tensor,
+ k: &Tensor,
+ v: &Tensor,
+ seqlens_q: &Tensor,
+ seqlens_k: &Tensor,
+ max_seqlen_q: usize,
+ max_seqlen_k: usize,
+ softmax_scale: f32,
+ causal: bool,
+) -> Result<Tensor> {
+ let op = FlashAttnVarLen {
+ softmax_scale,
+ causal,
+ max_seqlen_q,
+ max_seqlen_k,
+ seqlens_q: seqlens_q.clone(),
+ seqlens_k: seqlens_k.clone(),
+ };
+ q.custom_op3(k, v, op)
+}
diff --git a/candle-flash-attn/tests/flash_attn_tests.rs b/candle-flash-attn/tests/flash_attn_tests.rs
index 43cb324f..250added 100644
--- a/candle-flash-attn/tests/flash_attn_tests.rs
+++ b/candle-flash-attn/tests/flash_attn_tests.rs
@@ -88,3 +88,48 @@ fn flash_attn_acausal() -> Result<()> {
assert!(diff.to_vec0::<f32>()?.abs() < 1e-5);
Ok(())
}
+
+#[test]
+fn flash_attn_varlen() -> Result<()> {
+ let device = Device::new_cuda(0)?;
+ let q = Tensor::arange(0u32, 48, &device)?
+ .to_dtype(DType::F16)?
+ .reshape((3, 2, 8))?;
+ let k = (&q / 40.)?;
+ let v = (&q / 50.)?;
+ let q = (&q / 30.)?;
+
+ let seqlens_q = Tensor::new(&[0u32, 2u32], &device)?;
+ let seqlens_k = Tensor::new(&[0u32, 2u32], &device)?;
+
+ let ys = {
+ let q = q.transpose(0, 1)?;
+ let k = k.transpose(0, 1)?;
+ let v = v.transpose(0, 1)?;
+ candle_flash_attn::flash_attn_varlen(
+ &q, &k, &v, &seqlens_q, &seqlens_k, 32, 32, 0.5, false,
+ )?
+ .transpose(0, 1)?
+ };
+ let ys = ys.to_dtype(DType::F32)?;
+
+ assert_eq!(ys.dims(), &[3, 2, 8]);
+ assert_eq!(
+ to_vec3_round(ys, 4)?,
+ &[
+ [
+ [0.0837, 0.1038, 0.1238, 0.1438, 0.1637, 0.1837, 0.2037, 0.2238],
+ [0.0922, 0.1122, 0.1322, 0.1522, 0.1721, 0.1921, 0.2122, 0.2322]
+ ],
+ [
+ [0.4204, 0.4404, 0.4604, 0.4805, 0.5005, 0.5205, 0.5405, 0.5605],
+ [0.428, 0.448, 0.468, 0.488, 0.5083, 0.5283, 0.5483, 0.5684]
+ ],
+ [
+ [0.7554, 0.7754, 0.7954, 0.8154, 0.8354, 0.8555, 0.8755, 0.8955],
+ [0.7622, 0.7822, 0.8022, 0.8223, 0.8423, 0.8623, 0.8823, 0.9023]
+ ]
+ ]
+ );
+ Ok(())
+}