summaryrefslogtreecommitdiff
path: root/candle-kernels/src
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-09-10 21:02:42 +0100
committerGitHub <noreply@github.com>2023-09-10 21:02:42 +0100
commit98d1242b8fd917baa95c9143252962f8fad3ebf7 (patch)
treef9224428362a37bd39da626b7d1b2554f5440149 /candle-kernels/src
parent18d6db2180800dcc134ffabe8523a774c6a7f9a3 (diff)
downloadcandle-98d1242b8fd917baa95c9143252962f8fad3ebf7.tar.gz
candle-98d1242b8fd917baa95c9143252962f8fad3ebf7.tar.bz2
candle-98d1242b8fd917baa95c9143252962f8fad3ebf7.zip
im2col based conv2d (#802)
* im2col implementation for conv2d. * Fix for the im2col implementation to match the current conv2d. * Small optimization. * Add a cuda kernel. * Handle arbitrary layouts. * Im2Col cuda code.
Diffstat (limited to 'candle-kernels/src')
-rw-r--r--candle-kernels/src/conv.cu89
1 files changed, 89 insertions, 0 deletions
diff --git a/candle-kernels/src/conv.cu b/candle-kernels/src/conv.cu
index ba2fa1ad..51c393cb 100644
--- a/candle-kernels/src/conv.cu
+++ b/candle-kernels/src/conv.cu
@@ -51,6 +51,71 @@ __device__ void conv1d(
dst[dst_i] = static_cast<T>(d);
}
+template <typename T>
+__device__ void im2col(
+ const size_t dst_numel,
+ const size_t h_out,
+ const size_t w_out,
+ const size_t h_k,
+ const size_t w_k,
+ const size_t stride,
+ const size_t padding,
+ const size_t dilation,
+ const size_t *info,
+ const T *src,
+ T *dst
+) {
+ const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
+ // dst: (b_size, h_out, w_out, c_in, h_k, w_k)
+ // src: (b_size, c_in, h_in, w_in)
+ if (dst_i >= dst_numel) {
+ return;
+ }
+ const size_t *src_dims = info;
+ const size_t *src_s = info + 4;
+ const size_t b_in = src_dims[0];
+ const size_t c_in = src_dims[1];
+ const size_t h_in = src_dims[2];
+ const size_t w_in = src_dims[3];
+
+ const size_t dst_s4 = w_k;
+ const size_t dst_s3 = h_k * dst_s4;
+ const size_t dst_s2 = c_in * dst_s3;
+ const size_t dst_s1 = w_out * dst_s2;
+ const size_t dst_s0 = h_out * dst_s1;
+
+ size_t tmp_dst_i = dst_i;
+ const size_t b_idx = tmp_dst_i / dst_s0;
+ tmp_dst_i -= b_idx * dst_s0;
+ const size_t h_idx = tmp_dst_i / dst_s1;
+ tmp_dst_i -= h_idx * dst_s1;
+ const size_t w_idx = tmp_dst_i / dst_s2;
+ tmp_dst_i -= w_idx * dst_s2;
+ const size_t c_idx = tmp_dst_i / dst_s3;
+ tmp_dst_i -= c_idx * dst_s3;
+ const size_t h_k_idx = tmp_dst_i / dst_s4;
+ tmp_dst_i -= h_k_idx * dst_s4;
+ const size_t w_k_idx = tmp_dst_i;
+ size_t src_h_idx = h_idx * stride + h_k_idx * dilation;
+ size_t src_w_idx = w_idx * stride + w_k_idx * dilation;
+ if (src_h_idx < padding || src_h_idx >= h_in + padding) {
+ dst[dst_i] = static_cast<T>(0);
+ }
+ else if (src_w_idx < padding || src_w_idx >= w_in + padding) {
+ dst[dst_i] = static_cast<T>(0);
+ }
+ else {
+ src_h_idx -= padding;
+ src_w_idx -= padding;
+ const size_t src_i =
+ b_idx * src_s[0]
+ + c_idx * src_s[1]
+ + src_h_idx * src_s[2]
+ + src_w_idx * src_s[3];
+ dst[dst_i] = src[src_i];
+ }
+}
+
// Naive implementation of conv2d.
template <typename T, typename A>
__device__ void conv2d(
@@ -363,6 +428,23 @@ extern "C" __global__ void FN_NAME( \
conv2d<TYPENAME, TYPEACC>(src_numel, w_out, h_out, stride, padding, dilation, info, src, kernel, dst); \
} \
+#define IM2COL_OP(TYPENAME, FN_NAME) \
+extern "C" __global__ void FN_NAME( \
+ const size_t dst_numel, \
+ const size_t h_out, \
+ const size_t w_out, \
+ const size_t h_k, \
+ const size_t w_k, \
+ const size_t stride, \
+ const size_t padding, \
+ const size_t dilation, \
+ const size_t *info, \
+ const TYPENAME *src, \
+ TYPENAME *dst \
+) { \
+ im2col<TYPENAME>(dst_numel, h_out, w_out, h_k, w_k, stride, padding, dilation, info, src, dst); \
+} \
+
#define CONVT2D_OP(TYPENAME, TYPEACC, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t src_numel, \
@@ -428,6 +510,7 @@ CONVT2D_OP(__nv_bfloat16, float, conv_transpose2d_bf16)
AVG_POOL2D_OP(__nv_bfloat16, float, avg_pool2d_bf16)
MAX_POOL2D_OP(__nv_bfloat16, max_pool2d_bf16)
UPSAMPLE_NEAREST2D_OP(__nv_bfloat16, upsample_nearest2d_bf16)
+IM2COL_OP(__nv_bfloat16, im2col_bf16)
#endif
#if __CUDA_ARCH__ >= 530
@@ -437,6 +520,7 @@ CONVT2D_OP(__half, float, conv_transpose2d_f16)
AVG_POOL2D_OP(__half, float, avg_pool2d_f16)
MAX_POOL2D_OP(__half, max_pool2d_f16)
UPSAMPLE_NEAREST2D_OP(__half, upsample_nearest2d_f16)
+IM2COL_OP(__half, im2col_f16)
#endif
CONV1D_OP(float, float, conv1d_f32)
@@ -468,3 +552,8 @@ UPSAMPLE_NEAREST2D_OP(float, upsample_nearest2d_f32)
UPSAMPLE_NEAREST2D_OP(double, upsample_nearest2d_f64)
UPSAMPLE_NEAREST2D_OP(uint8_t, upsample_nearest2d_u8)
UPSAMPLE_NEAREST2D_OP(uint32_t, upsample_nearest2d_u32)
+
+IM2COL_OP(float, im2col_f32)
+IM2COL_OP(double, im2col_f64)
+IM2COL_OP(uint8_t, im2col_u8)
+IM2COL_OP(uint32_t, im2col_u32)