diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-09-10 21:02:42 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-09-10 21:02:42 +0100 |
commit | 98d1242b8fd917baa95c9143252962f8fad3ebf7 (patch) | |
tree | f9224428362a37bd39da626b7d1b2554f5440149 /candle-kernels/src | |
parent | 18d6db2180800dcc134ffabe8523a774c6a7f9a3 (diff) | |
download | candle-98d1242b8fd917baa95c9143252962f8fad3ebf7.tar.gz candle-98d1242b8fd917baa95c9143252962f8fad3ebf7.tar.bz2 candle-98d1242b8fd917baa95c9143252962f8fad3ebf7.zip |
im2col based conv2d (#802)
* im2col implementation for conv2d.
* Fix for the im2col implementation to match the current conv2d.
* Small optimization.
* Add a cuda kernel.
* Handle arbitrary layouts.
* Im2Col cuda code.
Diffstat (limited to 'candle-kernels/src')
-rw-r--r-- | candle-kernels/src/conv.cu | 89 |
1 files changed, 89 insertions, 0 deletions
diff --git a/candle-kernels/src/conv.cu b/candle-kernels/src/conv.cu index ba2fa1ad..51c393cb 100644 --- a/candle-kernels/src/conv.cu +++ b/candle-kernels/src/conv.cu @@ -51,6 +51,71 @@ __device__ void conv1d( dst[dst_i] = static_cast<T>(d); } +template <typename T> +__device__ void im2col( + const size_t dst_numel, + const size_t h_out, + const size_t w_out, + const size_t h_k, + const size_t w_k, + const size_t stride, + const size_t padding, + const size_t dilation, + const size_t *info, + const T *src, + T *dst +) { + const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; + // dst: (b_size, h_out, w_out, c_in, h_k, w_k) + // src: (b_size, c_in, h_in, w_in) + if (dst_i >= dst_numel) { + return; + } + const size_t *src_dims = info; + const size_t *src_s = info + 4; + const size_t b_in = src_dims[0]; + const size_t c_in = src_dims[1]; + const size_t h_in = src_dims[2]; + const size_t w_in = src_dims[3]; + + const size_t dst_s4 = w_k; + const size_t dst_s3 = h_k * dst_s4; + const size_t dst_s2 = c_in * dst_s3; + const size_t dst_s1 = w_out * dst_s2; + const size_t dst_s0 = h_out * dst_s1; + + size_t tmp_dst_i = dst_i; + const size_t b_idx = tmp_dst_i / dst_s0; + tmp_dst_i -= b_idx * dst_s0; + const size_t h_idx = tmp_dst_i / dst_s1; + tmp_dst_i -= h_idx * dst_s1; + const size_t w_idx = tmp_dst_i / dst_s2; + tmp_dst_i -= w_idx * dst_s2; + const size_t c_idx = tmp_dst_i / dst_s3; + tmp_dst_i -= c_idx * dst_s3; + const size_t h_k_idx = tmp_dst_i / dst_s4; + tmp_dst_i -= h_k_idx * dst_s4; + const size_t w_k_idx = tmp_dst_i; + size_t src_h_idx = h_idx * stride + h_k_idx * dilation; + size_t src_w_idx = w_idx * stride + w_k_idx * dilation; + if (src_h_idx < padding || src_h_idx >= h_in + padding) { + dst[dst_i] = static_cast<T>(0); + } + else if (src_w_idx < padding || src_w_idx >= w_in + padding) { + dst[dst_i] = static_cast<T>(0); + } + else { + src_h_idx -= padding; + src_w_idx -= padding; + const size_t src_i = + b_idx * src_s[0] + + c_idx * src_s[1] + + src_h_idx * src_s[2] + + src_w_idx * src_s[3]; + dst[dst_i] = src[src_i]; + } +} + // Naive implementation of conv2d. template <typename T, typename A> __device__ void conv2d( @@ -363,6 +428,23 @@ extern "C" __global__ void FN_NAME( \ conv2d<TYPENAME, TYPEACC>(src_numel, w_out, h_out, stride, padding, dilation, info, src, kernel, dst); \ } \ +#define IM2COL_OP(TYPENAME, FN_NAME) \ +extern "C" __global__ void FN_NAME( \ + const size_t dst_numel, \ + const size_t h_out, \ + const size_t w_out, \ + const size_t h_k, \ + const size_t w_k, \ + const size_t stride, \ + const size_t padding, \ + const size_t dilation, \ + const size_t *info, \ + const TYPENAME *src, \ + TYPENAME *dst \ +) { \ + im2col<TYPENAME>(dst_numel, h_out, w_out, h_k, w_k, stride, padding, dilation, info, src, dst); \ +} \ + #define CONVT2D_OP(TYPENAME, TYPEACC, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t src_numel, \ @@ -428,6 +510,7 @@ CONVT2D_OP(__nv_bfloat16, float, conv_transpose2d_bf16) AVG_POOL2D_OP(__nv_bfloat16, float, avg_pool2d_bf16) MAX_POOL2D_OP(__nv_bfloat16, max_pool2d_bf16) UPSAMPLE_NEAREST2D_OP(__nv_bfloat16, upsample_nearest2d_bf16) +IM2COL_OP(__nv_bfloat16, im2col_bf16) #endif #if __CUDA_ARCH__ >= 530 @@ -437,6 +520,7 @@ CONVT2D_OP(__half, float, conv_transpose2d_f16) AVG_POOL2D_OP(__half, float, avg_pool2d_f16) MAX_POOL2D_OP(__half, max_pool2d_f16) UPSAMPLE_NEAREST2D_OP(__half, upsample_nearest2d_f16) +IM2COL_OP(__half, im2col_f16) #endif CONV1D_OP(float, float, conv1d_f32) @@ -468,3 +552,8 @@ UPSAMPLE_NEAREST2D_OP(float, upsample_nearest2d_f32) UPSAMPLE_NEAREST2D_OP(double, upsample_nearest2d_f64) UPSAMPLE_NEAREST2D_OP(uint8_t, upsample_nearest2d_u8) UPSAMPLE_NEAREST2D_OP(uint32_t, upsample_nearest2d_u32) + +IM2COL_OP(float, im2col_f32) +IM2COL_OP(double, im2col_f64) +IM2COL_OP(uint8_t, im2col_u8) +IM2COL_OP(uint32_t, im2col_u32) |