summaryrefslogtreecommitdiff
path: root/candle-kernels/src
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-08-14 13:12:17 +0100
committerGitHub <noreply@github.com>2023-08-14 13:12:17 +0100
commitc84883ecf2c240792392353175b634f6ec92a011 (patch)
tree10b14324310421802a68669485c75cc3dcc16c48 /candle-kernels/src
parenta094dc503d69a6ca3db71098ebc26d0d2f2a33a6 (diff)
downloadcandle-c84883ecf2c240792392353175b634f6ec92a011.tar.gz
candle-c84883ecf2c240792392353175b634f6ec92a011.tar.bz2
candle-c84883ecf2c240792392353175b634f6ec92a011.zip
Add a cuda kernel for upsampling. (#441)
* Add a cuda kernel for upsampling. * Update for the latest tokenizers version.
Diffstat (limited to 'candle-kernels/src')
-rw-r--r--candle-kernels/src/conv.cu62
1 files changed, 62 insertions, 0 deletions
diff --git a/candle-kernels/src/conv.cu b/candle-kernels/src/conv.cu
index 2da4d401..afda7d1d 100644
--- a/candle-kernels/src/conv.cu
+++ b/candle-kernels/src/conv.cu
@@ -220,6 +220,48 @@ __device__ void max_pool2d(
dst[dst_i] = d;
}
+template <typename T>
+__device__ void upsample_nearest2d(
+ const size_t w_out,
+ const size_t h_out,
+ const double w_scale,
+ const double h_scale,
+ const size_t *info,
+ const T *src,
+ T *dst
+) {
+ const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
+ // src: (b_size, c_in, w_in, h_in)
+ const size_t *src_dims = info;
+ const size_t *src_s = info + 4;
+
+ const size_t c = src_dims[1];
+ const size_t w_in = src_dims[2];
+ const size_t h_in = src_dims[3];
+
+ if (dst_i >= src_dims[0] * c * w_out * h_out) {
+ return;
+ }
+
+ // TODO: Improve this.
+ const size_t b_idx = dst_i / (w_out * h_out * c);
+ const size_t c_idx = (dst_i / (w_out * h_out)) % c;
+ const size_t dst_w = (dst_i / h_out) % w_out;
+ const size_t dst_h = dst_i % h_out;
+
+ size_t src_w = static_cast<size_t>(dst_w * w_scale);
+ size_t src_h = static_cast<size_t>(dst_h * h_scale);
+ if (src_w >= w_in) {
+ src_w = w_in - 1;
+ }
+ if (src_h >= h_in) {
+ src_h = h_in - 1;
+ }
+
+ const size_t src_i = b_idx * src_s[0] + c_idx * src_s[1] + src_w * src_s[2] + src_h * src_s[3];
+ dst[dst_i] = src[src_i];
+}
+
#define CONV1D_OP(TYPENAME, TYPEACC, FN_NAME) \
extern "C" __global__ void FN_NAME( \
@@ -278,11 +320,25 @@ extern "C" __global__ void FN_NAME( \
max_pool2d<TYPENAME>(src_numel, w_k, h_k, w_stride, h_stride, info, src, dst); \
} \
+#define UPSAMPLE_NEAREST2D_OP(TYPENAME, FN_NAME) \
+extern "C" __global__ void FN_NAME( \
+ const size_t w_out, \
+ const size_t h_out, \
+ const double w_scale, \
+ const double h_scale, \
+ const size_t *info, \
+ const TYPENAME *src, \
+ TYPENAME *dst \
+) { \
+ upsample_nearest2d<TYPENAME>(w_out, h_out, w_scale, h_scale, info, src, dst); \
+} \
+
#if __CUDA_ARCH__ >= 800
CONV1D_OP(__nv_bfloat16, float, conv1d_bf16)
CONV2D_OP(__nv_bfloat16, float, conv2d_bf16)
AVG_POOL2D_OP(__nv_bfloat16, float, avg_pool2d_bf16)
MAX_POOL2D_OP(__nv_bfloat16, max_pool2d_bf16)
+UPSAMPLE_NEAREST2D_OP(__nv_bfloat16, upsample_nearest2d_bf16)
#endif
#if __CUDA_ARCH__ >= 530
@@ -290,6 +346,7 @@ CONV1D_OP(__half, float, conv1d_f16)
CONV2D_OP(__half, float, conv2d_f16)
AVG_POOL2D_OP(__half, float, avg_pool2d_f16)
MAX_POOL2D_OP(__half, max_pool2d_f16)
+UPSAMPLE_NEAREST2D_OP(__half, upsample_nearest2d_f16)
#endif
CONV1D_OP(float, float, conv1d_f32)
@@ -311,3 +368,8 @@ MAX_POOL2D_OP(float, max_pool2d_f32)
MAX_POOL2D_OP(double, max_pool2d_f64)
MAX_POOL2D_OP(uint8_t, max_pool2d_u8)
MAX_POOL2D_OP(uint32_t, max_pool2d_u32)
+
+UPSAMPLE_NEAREST2D_OP(float, upsample_nearest2d_f32)
+UPSAMPLE_NEAREST2D_OP(double, upsample_nearest2d_f64)
+UPSAMPLE_NEAREST2D_OP(uint8_t, upsample_nearest2d_u8)
+UPSAMPLE_NEAREST2D_OP(uint32_t, upsample_nearest2d_u32)