summaryrefslogtreecommitdiff
path: root/candle-metal-kernels
diff options
context:
space:
mode:
authorThomas Santerre <thomas@santerre.xyz>2024-03-18 13:50:14 -0400
committerGitHub <noreply@github.com>2024-03-18 18:50:14 +0100
commit04a61a9c72a1f13546c8b7becd95055129fda22f (patch)
tree3aba0534f7a1b974002dff2595f0c0c7001f1822 /candle-metal-kernels
parent58605252e8c9355d6f2452f54918e9eb4b938b1f (diff)
downloadcandle-04a61a9c72a1f13546c8b7becd95055129fda22f.tar.gz
candle-04a61a9c72a1f13546c8b7becd95055129fda22f.tar.bz2
candle-04a61a9c72a1f13546c8b7becd95055129fda22f.zip
Add avg_pool2d metal implementation for the metal backend (#1869)
* implement metal avg pool 2d * fixX * add suggested precision workaround for the accumulator
Diffstat (limited to 'candle-metal-kernels')
-rw-r--r--candle-metal-kernels/src/conv.metal69
-rw-r--r--candle-metal-kernels/src/lib.rs2
-rw-r--r--candle-metal-kernels/src/tests.rs136
3 files changed, 194 insertions, 13 deletions
diff --git a/candle-metal-kernels/src/conv.metal b/candle-metal-kernels/src/conv.metal
index d7c23ddf..7f7a75cf 100644
--- a/candle-metal-kernels/src/conv.metal
+++ b/candle-metal-kernels/src/conv.metal
@@ -206,6 +206,67 @@ kernel void FN_NAME( \
upsample_nearest2d<TYPENAME>(w_out, h_out, w_scale, h_scale, dims, strides, src, dst, tid); \
} \
+template <typename T, typename A>
+METAL_FUNC void avg_pool2d(
+ constant size_t &w_k,
+ constant size_t &h_k,
+ constant size_t &w_stride,
+ constant size_t &h_stride,
+ constant size_t *src_dims,
+ constant size_t *src_strides,
+ device const T *src,
+ device T *dst,
+ uint tid [[ thread_position_in_grid ]]
+) {
+ const size_t c = src_dims[1];
+ const size_t w_in = src_dims[2];
+ const size_t h_in = src_dims[3];
+
+ const size_t w_out = (w_in - w_k) / w_stride + 1;
+ const size_t h_out = (h_in - h_k) / h_stride + 1;
+ if (tid >= src_dims[0] * c * w_out * h_out) {
+ return;
+ }
+
+ const size_t b_idx = tid / (w_out * h_out * c);
+ const size_t c_idx = (tid / (w_out * h_out)) % c;
+ const size_t dst_w = (tid / h_out) % w_out;
+ const size_t dst_h = tid % h_out;
+
+ const size_t src_idx0 = b_idx * src_strides[0];
+ A d = 0;
+ for (size_t w_offset = 0; w_offset < w_k; ++w_offset) {
+ size_t src_w = w_stride * dst_w + w_offset;
+ if (src_w >= w_in){
+ continue;
+ }
+ for (size_t h_offset = 0; h_offset < h_k; ++h_offset) {
+ size_t src_h = h_stride * dst_h + h_offset;
+ if (src_h >= h_in) {
+ continue;
+ }
+ const size_t src_idx = src_idx0 + c_idx * src_strides[1] + src_w * src_strides[2] + src_h * src_strides[3];
+ d += static_cast<A>(src[src_idx]);
+ }
+ }
+ dst[tid] = static_cast<T>(d / (w_k * h_k));
+}
+
+#define AVGPOOL2D_OP(TYPENAME, TYPEACC, FN_NAME) \
+kernel void FN_NAME( \
+ constant size_t &w_k, \
+ constant size_t &h_k, \
+ constant size_t &w_s, \
+ constant size_t &h_s, \
+ constant size_t *src_dims, \
+ constant size_t *src_s, \
+ device const TYPENAME *src, \
+ device TYPENAME *dst, \
+ uint tid [[ thread_position_in_grid ]] \
+) { \
+ avg_pool2d<TYPENAME, TYPEACC>(w_k, h_k, w_s, h_s, src_dims, src_s, src, dst, tid); \
+} \
+
template <typename T>
METAL_FUNC void max_pool2d(
constant size_t &w_k,
@@ -292,4 +353,12 @@ MAXPOOL2D_OP(uint32_t, max_pool2d_u32)
MAXPOOL2D_OP(uint8_t, max_pool2d_u8)
#if defined(__HAVE_BFLOAT__)
MAXPOOL2D_OP(bfloat, max_pool2d_bf16)
+#endif
+
+AVGPOOL2D_OP(float, float, avg_pool2d_f32)
+AVGPOOL2D_OP(half, float, avg_pool2d_f16)
+AVGPOOL2D_OP(uint32_t, uint32_t, avg_pool2d_u32)
+AVGPOOL2D_OP(uint8_t, uint8_t, avg_pool2d_u8)
+#if defined(__HAVE_BFLOAT__)
+AVGPOOL2D_OP(bfloat, float, avg_pool2d_bf16)
#endif \ No newline at end of file
diff --git a/candle-metal-kernels/src/lib.rs b/candle-metal-kernels/src/lib.rs
index b1830a25..1161501f 100644
--- a/candle-metal-kernels/src/lib.rs
+++ b/candle-metal-kernels/src/lib.rs
@@ -1827,7 +1827,7 @@ fn divide(m: usize, b: usize) -> NSUInteger {
}
#[allow(clippy::too_many_arguments)]
-pub fn call_max_pool2d(
+pub fn call_pool2d(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
diff --git a/candle-metal-kernels/src/tests.rs b/candle-metal-kernels/src/tests.rs
index 74721153..19e160dd 100644
--- a/candle-metal-kernels/src/tests.rs
+++ b/candle-metal-kernels/src/tests.rs
@@ -1369,7 +1369,7 @@ fn index_add() {
}
}
-fn run_max_pool2d<T: Clone>(
+fn run_pool2d<T: Clone>(
v: &[T],
(w_k, h_k): (usize, usize),
(w_stride, h_stride): (usize, usize),
@@ -1386,7 +1386,7 @@ fn run_max_pool2d<T: Clone>(
let input = new_buffer(&device, v);
let output = new_buffer(&device, &vec![0.0f32; dst_el]);
let kernels = Kernels::new();
- call_max_pool2d(
+ call_pool2d(
&device,
command_buffer,
&kernels,
@@ -1417,7 +1417,7 @@ fn max_pool2d_f32() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
- let results = run_max_pool2d(
+ let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@@ -1434,7 +1434,7 @@ fn max_pool2d_f32() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 2;
- let results = run_max_pool2d(
+ let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@@ -1454,7 +1454,7 @@ fn max_pool2d_f16() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
- let results = run_max_pool2d(
+ let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@@ -1474,7 +1474,7 @@ fn max_pool2d_f16() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 2;
- let results = run_max_pool2d(
+ let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@@ -1497,7 +1497,7 @@ fn max_pool2d_bf16() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
- let results = run_max_pool2d(
+ let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@@ -1517,7 +1517,7 @@ fn max_pool2d_bf16() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 2;
- let results = run_max_pool2d(
+ let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@@ -1540,7 +1540,7 @@ fn max_pool2d_u8() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
- let results = run_max_pool2d(
+ let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@@ -1557,7 +1557,7 @@ fn max_pool2d_u8() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 2;
- let results = run_max_pool2d(
+ let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@@ -1577,7 +1577,7 @@ fn max_pool2d_u32() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
- let results = run_max_pool2d(
+ let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@@ -1594,7 +1594,7 @@ fn max_pool2d_u32() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 2;
- let results = run_max_pool2d(
+ let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@@ -1605,3 +1605,115 @@ fn max_pool2d_u32() {
let expected = vec![5, 7, 13, 15];
assert_eq!(results, expected);
}
+
+#[test]
+fn avg_pool2d_f32() {
+ // kernel 2 stride 1
+ let v: Vec<f32> = (0..16).map(|v| v as f32).collect();
+ let shape = vec![1, 1, 4, 4];
+ let strides = vec![16, 16, 4, 1];
+ let kernel = 2;
+ let stride = 1;
+ let results = run_pool2d(
+ &v,
+ (kernel, kernel),
+ (stride, stride),
+ &shape,
+ &strides,
+ "avg_pool2d_f32",
+ );
+ let expected = vec![
+ 2.5000, 3.5000, 4.5000, 6.5000, 7.5000, 8.5000, 10.5000, 11.5000, 12.5000,
+ ];
+ assert_eq!(results, expected);
+}
+
+#[test]
+fn avg_pool2d_f16() {
+ // kernel 2 stride 1
+ let v: Vec<f16> = (0..16).map(|v| f16::from_f32(v as f32)).collect();
+ let shape = vec![1, 1, 4, 4];
+ let strides = vec![16, 16, 4, 1];
+ let kernel = 2;
+ let stride = 1;
+ let results = run_pool2d(
+ &v,
+ (kernel, kernel),
+ (stride, stride),
+ &shape,
+ &strides,
+ "avg_pool2d_f16",
+ );
+ let expected = vec![
+ 2.5000, 3.5000, 4.5000, 6.5000, 7.5000, 8.5000, 10.5000, 11.5000, 12.5000,
+ ]
+ .iter()
+ .map(|v| f16::from_f32(*v))
+ .collect::<Vec<_>>();
+ assert_eq!(results, expected);
+}
+
+#[test]
+fn avg_pool2d_bf16() {
+ // kernel 2 stride 1
+ let v: Vec<bf16> = (0..16).map(|v| bf16::from_f32(v as f32)).collect();
+ let shape = vec![1, 1, 4, 4];
+ let strides = vec![16, 16, 4, 1];
+ let kernel = 2;
+ let stride = 1;
+ let results = run_pool2d(
+ &v,
+ (kernel, kernel),
+ (stride, stride),
+ &shape,
+ &strides,
+ "avg_pool2d_bf16",
+ );
+ let expected = vec![
+ 2.5000, 3.5000, 4.5000, 6.5000, 7.5000, 8.5000, 10.5000, 11.5000, 12.5000,
+ ]
+ .iter()
+ .map(|v| bf16::from_f32(*v))
+ .collect::<Vec<_>>();
+ assert_eq!(results, expected);
+}
+
+#[test]
+fn avg_pool2d_u8() {
+ // kernel 2 stride 1
+ let v: Vec<u8> = (0..16).map(|v| v as u8).collect();
+ let shape = vec![1, 1, 4, 4];
+ let strides = vec![16, 16, 4, 1];
+ let kernel = 2;
+ let stride = 1;
+ let results = run_pool2d(
+ &v,
+ (kernel, kernel),
+ (stride, stride),
+ &shape,
+ &strides,
+ "avg_pool2d_u8",
+ );
+ let expected = vec![2, 3, 4, 6, 7, 8, 10, 11, 12];
+ assert_eq!(results, expected);
+}
+
+#[test]
+fn avg_pool2d_u32() {
+ // kernel 2 stride 1
+ let v: Vec<u32> = (0..16).map(|v| v as u32).collect();
+ let shape = vec![1, 1, 4, 4];
+ let strides = vec![16, 16, 4, 1];
+ let kernel = 2;
+ let stride = 1;
+ let results = run_pool2d(
+ &v,
+ (kernel, kernel),
+ (stride, stride),
+ &shape,
+ &strides,
+ "avg_pool2d_u32",
+ );
+ let expected = vec![2, 3, 4, 6, 7, 8, 10, 11, 12];
+ assert_eq!(results, expected);
+}