summaryrefslogtreecommitdiff
path: root/candle-metal-kernels
diff options
context:
space:
mode:
authorIvar Flakstad <69173633+ivarflakstad@users.noreply.github.com>2024-01-17 18:02:01 +0100
committerIvar Flakstad <69173633+ivarflakstad@users.noreply.github.com>2024-01-17 18:03:57 +0100
commitdb923517b3da10746c0f6b5270fee511e8116cc0 (patch)
tree469a79a6c03640eb99473035aefd6ebe1cf89fd9 /candle-metal-kernels
parent86a8e58897f012445de2f35318b19a89ebfaa327 (diff)
parent403680f17ddc086295fbaee316cbed22d97a519b (diff)
downloadcandle-db923517b3da10746c0f6b5270fee511e8116cc0.tar.gz
candle-db923517b3da10746c0f6b5270fee511e8116cc0.tar.bz2
candle-db923517b3da10746c0f6b5270fee511e8116cc0.zip
Merge branch 'main' into ivarflakstad/metal-prng
Diffstat (limited to 'candle-metal-kernels')
-rw-r--r--candle-metal-kernels/src/lib.rs239
-rw-r--r--candle-metal-kernels/src/quantized.metal5107
-rw-r--r--candle-metal-kernels/src/tests.rs36
-rw-r--r--candle-metal-kernels/src/unary.metal2
4 files changed, 5300 insertions, 84 deletions
diff --git a/candle-metal-kernels/src/lib.rs b/candle-metal-kernels/src/lib.rs
index 6a10c333..58569e6b 100644
--- a/candle-metal-kernels/src/lib.rs
+++ b/candle-metal-kernels/src/lib.rs
@@ -16,6 +16,7 @@ const CONV: &str = include_str!("conv.metal");
const REDUCE: &str = include_str!("reduce.metal");
const RANDOM: &str = include_str!("random.metal");
const MFA: &[u8] = include_bytes!("libMetalFlashAttention.metallib");
+const QUANTIZED: &str = include_str!("quantized.metal");
/// Most kernels apply similarly across the tensors
/// This creates a strategy that uses the maximum amount of threads per threadgroup (capped at the
@@ -64,6 +65,8 @@ macro_rules! primitive {
}
primitive!(bool);
primitive!(usize);
+primitive!(i32);
+primitive!(i64);
primitive!(u32);
primitive!(u64);
primitive!(f32);
@@ -121,6 +124,7 @@ pub enum Source {
Mfa,
Conv,
Random,
+ Quantized,
}
macro_rules! ops{
@@ -219,17 +223,15 @@ type Pipelines = HashMap<(&'static str, Option<ConstantValues>), ComputePipeline
pub struct Kernels {
libraries: RwLock<Libraries>,
pipelines: RwLock<Pipelines>,
- fence: metal::Fence,
}
impl Kernels {
- pub fn new(fence: metal::Fence) -> Self {
+ pub fn new() -> Self {
let libraries = RwLock::new(Libraries::new());
let pipelines = RwLock::new(Pipelines::new());
Self {
libraries,
pipelines,
- fence,
}
}
@@ -244,6 +246,7 @@ impl Kernels {
Source::Reduce => REDUCE,
Source::Conv => CONV,
Source::Random => RANDOM,
+ Source::Quantized => QUANTIZED,
Source::Mfa => panic!("Invalid lib"),
}
}
@@ -350,7 +353,6 @@ pub fn call_unary_contiguous(
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, input, output));
@@ -359,7 +361,6 @@ pub fn call_unary_contiguous(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -381,7 +382,6 @@ pub fn call_unary_strided(
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
@@ -403,7 +403,6 @@ pub fn call_unary_strided(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -422,7 +421,6 @@ pub fn call_binary_contiguous(
let pipeline = kernels.load_pipeline(device, Source::Binary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, left, right, output));
@@ -433,7 +431,6 @@ pub fn call_binary_contiguous(
encoder.use_resource(right, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -458,7 +455,6 @@ pub fn call_binary_strided(
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
let width: usize = shape.iter().product();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
@@ -483,7 +479,6 @@ pub fn call_binary_strided(
encoder.use_resource(right_input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -502,7 +497,6 @@ pub fn call_cast_contiguous(
let pipeline = kernels.load_pipeline(device, Source::Cast, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, (input, input_offset), output));
@@ -511,7 +505,6 @@ pub fn call_cast_contiguous(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -531,7 +524,6 @@ pub fn call_cast_strided(
let pipeline = kernels.load_pipeline(device, Source::Cast, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
@@ -553,7 +545,6 @@ pub fn call_cast_strided(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -573,7 +564,6 @@ pub fn call_reduce_contiguous(
let elements_to_sum = length / out_length;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
@@ -602,7 +592,6 @@ pub fn call_reduce_contiguous(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -624,7 +613,6 @@ pub fn call_reduce_strided(
let elements_to_sum = length / out_length;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
@@ -660,7 +648,6 @@ pub fn call_reduce_strided(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -679,7 +666,6 @@ pub fn call_last_softmax(
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
@@ -710,7 +696,6 @@ pub fn call_last_softmax(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -730,7 +715,6 @@ pub fn call_affine(
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, add, input, output));
@@ -739,7 +723,6 @@ pub fn call_affine(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -762,7 +745,6 @@ pub fn call_affine_strided(
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
@@ -783,7 +765,6 @@ pub fn call_affine_strided(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -802,7 +783,6 @@ pub fn call_powf(
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, input, output));
@@ -811,7 +791,6 @@ pub fn call_powf(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -833,7 +812,6 @@ pub fn call_powf_strided(
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
@@ -853,7 +831,6 @@ pub fn call_powf_strided(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -872,7 +849,6 @@ pub fn call_elu(
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, input, output));
@@ -881,7 +857,6 @@ pub fn call_elu(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -903,7 +878,6 @@ pub fn call_elu_strided(
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
@@ -923,7 +897,6 @@ pub fn call_elu_strided(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -945,7 +918,6 @@ pub fn call_where_cond_strided(
let pipeline = kernels.load_pipeline(device, Source::Ternary, name)?;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
let size: usize = shape.iter().product();
@@ -974,7 +946,6 @@ pub fn call_where_cond_strided(
encoder.use_resource(right, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -1001,7 +972,6 @@ pub fn call_index_select(
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
@@ -1024,7 +994,6 @@ pub fn call_index_select(
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -1053,7 +1022,6 @@ pub fn call_gather(
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
@@ -1076,7 +1044,6 @@ pub fn call_gather(
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -1105,7 +1072,6 @@ pub fn call_scatter_add(
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
@@ -1128,7 +1094,6 @@ pub fn call_scatter_add(
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -1158,7 +1123,6 @@ pub fn call_index_add(
let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
@@ -1182,7 +1146,6 @@ pub fn call_index_add(
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
@@ -1386,7 +1349,6 @@ pub fn call_gemm(
let block_bytes = block_elements * bytes;
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
encoder.set_threadgroup_memory_length(0, block_bytes.into());
encoder.set_buffer(0, Some(lhs_buffer), lhs_offset as NSUInteger);
@@ -1430,7 +1392,6 @@ pub fn call_gemm(
encoder.use_resource(rhs_buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(grid_size, group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
@@ -1455,7 +1416,6 @@ pub fn call_im2col1d_strided(
let encoder = command_buffer.new_compute_command_encoder();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
@@ -1475,7 +1435,6 @@ pub fn call_im2col1d_strided(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
@@ -1505,7 +1464,6 @@ pub fn call_im2col_strided(
let encoder = command_buffer.new_compute_command_encoder();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
@@ -1527,7 +1485,6 @@ pub fn call_im2col_strided(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
@@ -1553,7 +1510,6 @@ pub fn call_upsample_nearest_2d(
let scale_h = shape[3] as f32 / out_h as f32;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
let encoder = command_buffer.new_compute_command_encoder();
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
@@ -1571,16 +1527,11 @@ pub fn call_upsample_nearest_2d(
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
-fn divide(m: usize, b: usize) -> NSUInteger {
- ((m + b - 1) / b) as NSUInteger
-}
-
#[allow(clippy::too_many_arguments)]
pub fn call_random_uniform(
device: &Device,
@@ -1604,7 +1555,6 @@ pub fn call_random_uniform(
let odd = (length % 2 != 0) as usize;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length / 2 + odd);
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, min, max, seed, buffer));
@@ -1613,7 +1563,6 @@ pub fn call_random_uniform(
encoder.use_resource(seed, metal::MTLResourceUsage::Write);
encoder.use_resource(buffer, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
@@ -1637,7 +1586,6 @@ pub fn call_random_normal(
let odd = (length % 2 != 0) as usize;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length / 2 + odd);
- encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, mean, stddev, seed, buffer));
@@ -1646,11 +1594,184 @@ pub fn call_random_normal(
encoder.use_resource(seed, metal::MTLResourceUsage::Write);
encoder.use_resource(buffer, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
- encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
+#[derive(Debug, Clone, Copy)]
+pub enum GgmlDType {
+ Q4_0,
+ Q4_1,
+ Q5_0,
+ Q5_1,
+ Q8_0,
+ Q8_1,
+ Q2K,
+ Q3K,
+ Q4K,
+ Q5K,
+ Q6K,
+ Q8K,
+ F16,
+ F32,
+}
+
+pub fn call_quantized_matmul_t(
+ device: &Device,
+ command_buffer: &CommandBufferRef,
+ kernels: &Kernels,
+ dtype: GgmlDType,
+ (b, m, n, k): (usize, usize, usize, usize),
+ lhs: &Buffer,
+ lhs_offset: usize,
+ rhs: &Buffer,
+ output: &Buffer,
+) -> Result<(), MetalKernelError> {
+ // Everything is in reverse
+ let ne00 = k as i64;
+ let ne01 = n as i64;
+ let ne02 = b as i64;
+ let ne03 = 1 as i64;
+
+ let nb00 = 0i64;
+ let nb01 = 0 as i64;
+ let nb02 = 0 as i64;
+
+ let ne10 = k as i64;
+ let ne11 = m as i64;
+ let ne12 = b as i64;
+ let ne13 = 1 as i64;
+
+ let nb10 = 0i64;
+ let nb11 = 0i64;
+ let nb12 = 0i64;
+
+ let ne0 = n as i64;
+ let ne1 = m as i64;
+ let r2: u32 = (ne12 / ne02) as u32;
+ let r3: u32 = (ne13 / ne03) as u32;
+
+ let (nth0, nth1, align) = match dtype {
+ GgmlDType::Q4_0
+ | GgmlDType::Q4_1
+ | GgmlDType::Q5_0
+ | GgmlDType::Q5_1
+ | GgmlDType::Q8_0
+ | GgmlDType::Q8_1 => {
+ let nth0 = 8;
+ let nth1 = 8;
+ let align = 8;
+ (nth0, nth1, align)
+ }
+ GgmlDType::Q2K => {
+ // Fixing a bug in Metal for GGML
+ let nth0 = 4;
+ let nth1 = 8;
+ let align = 4;
+ (nth0, nth1, align)
+ }
+ GgmlDType::Q4K => {
+ let nth0 = 4;
+ let nth1 = 8;
+ let align = 4;
+ (nth0, nth1, align)
+ }
+ GgmlDType::Q3K | GgmlDType::Q5K => {
+ let nth0 = 2;
+ let nth1 = 32;
+ let align = 4;
+ (nth0, nth1, align)
+ }
+ GgmlDType::Q6K => {
+ let nth0 = 2;
+ let nth1 = 32;
+ let align = 2;
+ (nth0, nth1, align)
+ }
+ GgmlDType::F16 | GgmlDType::Q8K => {
+ // Original implem uses rows
+ let nth0 = 32;
+ let nth1 = 1;
+ let align = 8;
+ (nth0, nth1, align)
+ }
+ GgmlDType::F32 => {
+ let nth0 = 32;
+ let nth1 = 1;
+ let align = 8;
+ (nth0, nth1, align)
+ }
+ };
+ let thread_groups_count = MTLSize {
+ width: divide(ne01 as usize, align),
+ height: ne11 as u64,
+ depth: (ne12 * ne13) as u64,
+ };
+ let threads_per_threadgroup = MTLSize {
+ width: nth0,
+ height: nth1,
+ depth: 1,
+ };
+ let name = match dtype {
+ GgmlDType::Q4_0 => "kernel_mul_mv_q4_0_f32",
+ GgmlDType::Q4_1 => "kernel_mul_mv_q4_1_f32",
+ GgmlDType::Q5_0 => "kernel_mul_mv_q5_0_f32",
+ GgmlDType::Q5_1 => "kernel_mul_mv_q5_1_f32",
+ GgmlDType::Q8_0 => "kernel_mul_mv_q8_0_f32",
+ GgmlDType::Q8_1 => "kernel_mul_mv_q8_1_f32",
+ GgmlDType::Q2K => "kernel_mul_mv_q2_K_f32",
+ GgmlDType::Q3K => "kernel_mul_mv_q3_K_f32",
+ GgmlDType::Q4K => "kernel_mul_mv_q4_K_f32",
+ GgmlDType::Q5K => "kernel_mul_mv_q5_K_f32",
+ GgmlDType::Q6K => "kernel_mul_mv_q6_K_f32",
+ GgmlDType::Q8K => "kernel_mul_mv_q8_K_f32",
+ GgmlDType::F16 => "kernel_mul_mv_f16_f32",
+ GgmlDType::F32 => "kernel_mul_mv_f32_f32",
+ };
+
+ let pipeline = kernels.load_pipeline(device, Source::Quantized, name)?;
+ let encoder = command_buffer.new_compute_command_encoder();
+ encoder.set_compute_pipeline_state(&pipeline);
+
+ set_params!(
+ encoder,
+ (
+ rhs,
+ (lhs, lhs_offset),
+ output,
+ ne00,
+ ne01,
+ ne02,
+ nb00,
+ nb01,
+ nb02,
+ ne10,
+ ne11,
+ ne12,
+ nb10,
+ nb11,
+ nb12,
+ ne0,
+ ne1,
+ r2,
+ r3
+ )
+ );
+ encoder.set_threadgroup_memory_length(0, 8192);
+ encoder.use_resource(lhs, metal::MTLResourceUsage::Read);
+ encoder.use_resource(rhs, metal::MTLResourceUsage::Read);
+ encoder.use_resource(output, metal::MTLResourceUsage::Write);
+
+ encoder.dispatch_thread_groups(thread_groups_count, threads_per_threadgroup);
+ encoder.end_encoding();
+
+ Ok(())
+}
+
+fn divide(m: usize, b: usize) -> NSUInteger {
+ ((m + b - 1) / b) as NSUInteger
+}
+
#[cfg(test)]
mod tests;
diff --git a/candle-metal-kernels/src/quantized.metal b/candle-metal-kernels/src/quantized.metal
new file mode 100644
index 00000000..9aa7b502
--- /dev/null
+++ b/candle-metal-kernels/src/quantized.metal
@@ -0,0 +1,5107 @@
+#include <metal_stdlib>
+
+using namespace metal;
+
+#define MAX(x, y) ((x) > (y) ? (x) : (y))
+#define MIN(x, y) ((x) < (y) ? (x) : (y))
+#define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
+
+#define QK4_0 32
+#define QR4_0 2
+typedef struct {
+ half d; // delta
+ uint8_t qs[QK4_0 / 2]; // nibbles / quants
+} block_q4_0;
+
+#define QK4_1 32
+typedef struct {
+ half d; // delta
+ half m; // min
+ uint8_t qs[QK4_1 / 2]; // nibbles / quants
+} block_q4_1;
+
+#define QK5_0 32
+typedef struct {
+ half d; // delta
+ uint8_t qh[4]; // 5-th bit of quants
+ uint8_t qs[QK5_0 / 2]; // nibbles / quants
+} block_q5_0;
+
+#define QK5_1 32
+typedef struct {
+ half d; // delta
+ half m; // min
+ uint8_t qh[4]; // 5-th bit of quants
+ uint8_t qs[QK5_1 / 2]; // nibbles / quants
+} block_q5_1;
+
+#define QK8_0 32
+typedef struct {
+ half d; // delta
+ int8_t qs[QK8_0]; // quants
+} block_q8_0;
+
+#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
+
+enum ggml_sort_order {
+ GGML_SORT_ASC,
+ GGML_SORT_DESC,
+};
+
+// general-purpose kernel for addition, multiplication and division of two tensors
+// pros: works for non-contiguous tensors, supports broadcast across all dims
+// cons: not very efficient
+kernel void kernel_add(
+ device const char * src0,
+ device const char * src1,
+ device char * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant uint64_t & nb13,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ constant int64_t & offs,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig.z;
+ const int64_t i02 = tgpig.y;
+ const int64_t i01 = tgpig.x;
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+
+ device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
+ device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
+ device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
+
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
+ const int i10 = i0 % ne10;
+ *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10));
+ }
+}
+
+kernel void kernel_mul(
+ device const char * src0,
+ device const char * src1,
+ device char * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant uint64_t & nb13,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig.z;
+ const int64_t i02 = tgpig.y;
+ const int64_t i01 = tgpig.x;
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+
+ device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
+ device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
+ device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
+
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
+ const int i10 = i0 % ne10;
+ *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10));
+ }
+}
+
+kernel void kernel_div(
+ device const char * src0,
+ device const char * src1,
+ device char * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant uint64_t & nb13,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig.z;
+ const int64_t i02 = tgpig.y;
+ const int64_t i01 = tgpig.x;
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+
+ device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
+ device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
+ device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
+
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
+ const int i10 = i0 % ne10;
+ *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10));
+ }
+}
+
+// assumption: src1 is a row
+// broadcast src1 into src0
+kernel void kernel_add_row(
+ device const float4 * src0,
+ device const float4 * src1,
+ device float4 * dst,
+ constant uint64_t & nb [[buffer(28)]],
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = src0[tpig] + src1[tpig % nb];
+}
+
+kernel void kernel_mul_row(
+ device const float4 * src0,
+ device const float4 * src1,
+ device float4 * dst,
+ constant uint64_t & nb [[buffer(28)]],
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = src0[tpig] * src1[tpig % nb];
+}
+
+kernel void kernel_div_row(
+ device const float4 * src0,
+ device const float4 * src1,
+ device float4 * dst,
+ constant uint64_t & nb [[buffer(28)]],
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = src0[tpig] / src1[tpig % nb];
+}
+
+kernel void kernel_scale(
+ device const float * src0,
+ device float * dst,
+ constant float & scale,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = src0[tpig] * scale;
+}
+
+kernel void kernel_scale_4(
+ device const float4 * src0,
+ device float4 * dst,
+ constant float & scale,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = src0[tpig] * scale;
+}
+
+kernel void kernel_relu(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = max(0.0f, src0[tpig]);
+}
+
+kernel void kernel_tanh(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ device const float & x = src0[tpig];
+ dst[tpig] = precise::tanh(x);
+}
+
+constant float GELU_COEF_A = 0.044715f;
+constant float GELU_QUICK_COEF = -1.702f;
+constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+
+kernel void kernel_gelu(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ device const float4 & x = src0[tpig];
+
+ // BEWARE !!!
+ // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
+ // This was observed with Falcon 7B and 40B models
+ //
+ dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
+}
+
+kernel void kernel_gelu_quick(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ device const float4 & x = src0[tpig];
+
+ dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
+}
+
+kernel void kernel_silu(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ device const float4 & x = src0[tpig];
+ dst[tpig] = x / (1.0f + exp(-x));
+}
+
+kernel void kernel_sqr(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = src0[tpig] * src0[tpig];
+}
+
+kernel void kernel_sum_rows(
+ device const float * src0,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant uint64_t & nb13,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tpig[[thread_position_in_grid]]) {
+ int64_t i3 = tpig.z;
+ int64_t i2 = tpig.y;
+ int64_t i1 = tpig.x;
+
+ if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
+ return;
+ }
+
+ device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
+ device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
+
+ float row_sum = 0;
+
+ for (int64_t i0 = 0; i0 < ne00; i0++) {
+ row_sum += src_row[i0];
+ }
+
+ dst_row[0] = row_sum;
+}
+
+kernel void kernel_soft_max(
+ device const float * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant float & scale,
+ threadgroup float * buf [[threadgroup(0)]],
+ uint tgpig[[threadgroup_position_in_grid]],
+ uint tpitg[[thread_position_in_threadgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = (tgpig) / (ne02*ne01);
+ const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
+ const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
+
+ device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+ device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr;
+ device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ // parallel max
+ float lmax = -INFINITY;
+
+ for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
+ lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f));
+ }
+
+ // find the max value in the block
+ float max_val = simd_max(lmax);
+ if (ntg > N_SIMDWIDTH) {
+ if (sgitg == 0) {
+ buf[tiisg] = -INFINITY;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ if (tiisg == 0) {
+ buf[sgitg] = max_val;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ max_val = buf[tiisg];
+ max_val = simd_max(max_val);
+ }
+
+ // parallel sum
+ float lsum = 0.0f;
+ for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
+ const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
+ lsum += exp_psrc0;
+ pdst[i00] = exp_psrc0;
+ }
+
+ // This barrier fixes a failing test
+ // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
+ threadgroup_barrier(mem_flags::mem_none);
+
+ float sum = simd_sum(lsum);
+
+ if (ntg > N_SIMDWIDTH) {
+ if (sgitg == 0) {
+ buf[tiisg] = 0.0f;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ if (tiisg == 0) {
+ buf[sgitg] = sum;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ sum = buf[tiisg];
+ sum = simd_sum(sum);
+ }
+
+ const float inv_sum = 1.0f/sum;
+
+ for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
+ pdst[i00] *= inv_sum;
+ }
+}
+
+kernel void kernel_soft_max_4(
+ device const float * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant float & scale,
+ threadgroup float * buf [[threadgroup(0)]],
+ uint tgpig[[threadgroup_position_in_grid]],
+ uint tpitg[[thread_position_in_threadgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = (tgpig) / (ne02*ne01);
+ const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
+ const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
+
+ device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
+ device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
+ device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
+
+ // parallel max
+ float4 lmax4 = -INFINITY;
+
+ for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
+ lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f));
+ }
+
+ const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
+
+ float max_val = simd_max(lmax);
+ if (ntg > N_SIMDWIDTH) {
+ if (sgitg == 0) {
+ buf[tiisg] = -INFINITY;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ if (tiisg == 0) {
+ buf[sgitg] = max_val;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ max_val = buf[tiisg];
+ max_val = simd_max(max_val);
+ }
+
+ // parallel sum
+ float4 lsum4 = 0.0f;
+ for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
+ const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
+ lsum4 += exp_psrc4;
+ pdst4[i00] = exp_psrc4;
+ }
+
+ const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
+
+ // This barrier fixes a failing test
+ // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
+ threadgroup_barrier(mem_flags::mem_none);
+
+ float sum = simd_sum(lsum);
+
+ if (ntg > N_SIMDWIDTH) {
+ if (sgitg == 0) {
+ buf[tiisg] = 0.0f;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ if (tiisg == 0) {
+ buf[sgitg] = sum;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ sum = buf[tiisg];
+ sum = simd_sum(sum);
+ }
+
+ const float inv_sum = 1.0f/sum;
+
+ for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
+ pdst4[i00] *= inv_sum;
+ }
+}
+
+kernel void kernel_diag_mask_inf(
+ device const float * src0,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int & n_past,
+ uint3 tpig[[thread_position_in_grid]]) {
+ const int64_t i02 = tpig[2];
+ const int64_t i01 = tpig[1];
+ const int64_t i00 = tpig[0];
+
+ if (i00 > n_past + i01) {
+ dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
+ } else {
+ dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
+ }
+}
+
+kernel void kernel_diag_mask_inf_8(
+ device const float4 * src0,
+ device float4 * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int & n_past,
+ uint3 tpig[[thread_position_in_grid]]) {
+
+ const int64_t i = 2*tpig[0];
+
+ dst[i+0] = src0[i+0];
+ dst[i+1] = src0[i+1];
+ int64_t i4 = 4*i;
+ const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
+ const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
+ const int64_t i00 = i4;
+ for (int k = 3; k >= 0; --k) {
+ if (i00 + 4 + k <= n_past + i01) {
+ break;
+ }
+ dst[i+1][k] = -INFINITY;
+ if (i00 + k > n_past + i01) {
+ dst[i][k] = -INFINITY;
+ }
+ }
+}
+
+kernel void kernel_norm(
+ device const void * src0,
+ device float * dst,
+ constant int64_t & ne00,
+ constant uint64_t & nb01,
+ constant float & eps,
+ threadgroup float * sum [[threadgroup(0)]],
+ uint tgpig[[threadgroup_position_in_grid]],
+ uint tpitg[[thread_position_in_threadgroup]],
+ uint ntg[[threads_per_threadgroup]]) {
+ device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
+ // MEAN
+ // parallel sum
+ sum[tpitg] = 0.0f;
+ for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
+ sum[tpitg] += x[i00];
+ }
+ // reduce
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ for (uint i = ntg/2; i > 0; i /= 2) {
+ if (tpitg < i) {
+ sum[tpitg] += sum[tpitg + i];
+ }
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ }
+ const float mean = sum[0] / ne00;
+
+ // recenter and VARIANCE
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ device float * y = dst + tgpig*ne00;
+ sum[tpitg] = 0.0f;
+ for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
+ y[i00] = x[i00] - mean;
+ sum[tpitg] += y[i00] * y[i00];
+ }
+
+ // reduce
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ for (uint i = ntg/2; i > 0; i /= 2) {
+ if (tpitg < i) {
+ sum[tpitg] += sum[tpitg + i];
+ }
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ }
+ const float variance = sum[0] / ne00;
+
+ const float scale = 1.0f/sqrt(variance + eps);
+ for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
+ y[i00] = y[i00] * scale;
+ }
+}
+
+kernel void kernel_rms_norm(
+ device const void * src0,
+ device float * dst,
+ constant int64_t & ne00,
+ constant uint64_t & nb01,
+ constant float & eps,
+ threadgroup float * buf [[threadgroup(0)]],
+ uint tgpig[[threadgroup_position_in_grid]],
+ uint tpitg[[thread_position_in_threadgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint ntg[[threads_per_threadgroup]]) {
+ device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
+
+ float4 sumf = 0;
+ float all_sum = 0;
+
+ // parallel sum
+ for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
+ sumf += x[i00] * x[i00];
+ }
+ all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
+ all_sum = simd_sum(all_sum);
+ if (ntg > N_SIMDWIDTH) {
+ if (sgitg == 0) {
+ buf[tiisg] = 0.0f;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ if (tiisg == 0) {
+ buf[sgitg] = all_sum;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ all_sum = buf[tiisg];
+ all_sum = simd_sum(all_sum);
+ }
+
+ const float mean = all_sum/ne00;
+ const float scale = 1.0f/sqrt(mean + eps);
+
+ device float4 * y = (device float4 *) (dst + tgpig*ne00);
+ for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
+ y[i00] = x[i00] * scale;
+ }
+}
+
+kernel void kernel_group_norm(
+ device const float * src0,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int32_t & n_groups,
+ constant float & eps,
+ threadgroup float * buf [[threadgroup(0)]],
+ uint tgpig[[threadgroup_position_in_grid]],
+ uint tpitg[[thread_position_in_threadgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint ntg[[threads_per_threadgroup]]) {
+ const int64_t ne = ne00*ne01*ne02;
+ const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
+
+ int start = tgpig * gs;
+ int end = start + gs;
+
+ start += tpitg;
+
+ if (end >= ne) {
+ end = ne;
+ }
+
+ float tmp = 0.0f; // partial sum for thread in warp
+
+ for (int j = start; j < end; j += ntg) {
+ tmp += src0[j];
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ tmp = simd_sum(tmp);
+ if (ntg > N_SIMDWIDTH) {
+ if (sgitg == 0) {
+ buf[tiisg] = 0.0f;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ if (tiisg == 0) {
+ buf[sgitg] = tmp;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ tmp = buf[tiisg];
+ tmp = simd_sum(tmp);
+ }
+
+ const float mean = tmp / gs;
+ tmp = 0.0f;
+
+ for (int j = start; j < end; j += ntg) {
+ float xi = src0[j] - mean;
+ dst[j] = xi;
+ tmp += xi * xi;
+ }
+
+ tmp = simd_sum(tmp);
+ if (ntg > N_SIMDWIDTH) {
+ if (sgitg == 0) {
+ buf[tiisg] = 0.0f;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ if (tiisg == 0) {
+ buf[sgitg] = tmp;
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ tmp = buf[tiisg];
+ tmp = simd_sum(tmp);
+ }
+
+ const float variance = tmp / gs;
+ const float scale = 1.0f/sqrt(variance + eps);
+ for (int j = start; j < end; j += ntg) {
+ dst[j] *= scale;
+ }
+}
+
+// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
+// il indicates where the q4 quants begin (0 or QK4_0/4)
+// we assume that the yl's have been multiplied with the appropriate scale factor
+// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
+inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
+ float d = qb_curr->d;
+
+ float2 acc = 0.f;
+
+ device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
+
+ for (int i = 0; i < 8; i+=2) {
+ acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
+ + yl[i + 1] * (qs[i / 2] & 0x0F00);
+ acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
+ + yl[i + 9] * (qs[i / 2] & 0xF000);
+ }
+ return d * (sumy * -8.f + acc[0] + acc[1]);
+}
+
+// function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
+// il indicates where the q4 quants begin (0 or QK4_0/4)
+// we assume that the yl's have been multiplied with the appropriate scale factor
+// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
+inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
+ float d = qb_curr->d;
+ float m = qb_curr->m;
+
+ float2 acc = 0.f;
+
+ device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
+
+ for (int i = 0; i < 8; i+=2) {
+ acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
+ + yl[i + 1] * (qs[i / 2] & 0x0F00);
+ acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
+ + yl[i + 9] * (qs[i / 2] & 0xF000);
+ }
+ return d * (acc[0] + acc[1]) + sumy * m;
+}
+
+// function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
+// il indicates where the q5 quants begin (0 or QK5_0/4)
+// we assume that the yl's have been multiplied with the appropriate scale factor
+// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
+inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
+ float d = qb_curr->d;
+
+ float2 acc = 0.f;
+
+ device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
+ const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
+
+ for (int i = 0; i < 8; i+=2) {
+ acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
+ + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
+ acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
+ + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
+ }
+ return d * (sumy * -16.f + acc[0] + acc[1]);
+}
+
+// function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
+// il indicates where the q5 quants begin (0 or QK5_1/4)
+// we assume that the yl's have been multiplied with the appropriate scale factor
+// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
+inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
+ float d = qb_curr->d;
+ float m = qb_curr->m;
+
+ float2 acc = 0.f;
+
+ device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
+ const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
+
+ for (int i = 0; i < 8; i+=2) {
+ acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
+ + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
+ acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
+ + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
+ }
+ return d * (acc[0] + acc[1]) + sumy * m;
+}
+
+// putting them in the kernel cause a significant performance penalty
+#define N_DST 4 // each SIMD group works on 4 rows
+#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
+//Note: This is a template, but strictly speaking it only applies to
+// quantizations where the block size is 32. It also does not
+// guard against the number of rows not being divisible by
+// N_DST, so this is another explicit assumption of the implementation.
+template<typename block_q_type, int nr, int nsg, int nw>
+void mul_vec_q_n_f32_impl(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ int64_t ne00,
+ int64_t ne01,
+ int64_t ne02,
+ int64_t ne10,
+ int64_t ne12,
+ int64_t ne0,
+ int64_t ne1,
+ uint r2,
+ uint r3,
+ uint3 tgpig, uint tiisg, uint sgitg) {
+ const int nb = ne00/QK4_0;
+
+ const int r0 = tgpig.x;
+ const int r1 = tgpig.y;
+ const int im = tgpig.z;
+
+ const int first_row = (r0 * nsg + sgitg) * nr;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ device const block_q_type * x = (device const block_q_type *) src0 + offset0;
+ device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float yl[16]; // src1 vector cache
+ float sumf[nr] = {0.f};
+
+ const int ix = (tiisg/2);
+ const int il = (tiisg%2)*8;
+
+ device const float * yb = y + ix * QK4_0 + il;
+
+ // each thread in a SIMD group deals with half a block.
+ for (int ib = ix; ib < nb; ib += nw/2) {
+ float sumy = 0;
+ for (int i = 0; i < 8; i += 2) {
+ sumy += yb[i] + yb[i+1];
+ yl[i+0] = yb[i+ 0];
+ yl[i+1] = yb[i+ 1]/256.f;
+
+ sumy += yb[i+16] + yb[i+17];
+ yl[i+8] = yb[i+16]/16.f;
+ yl[i+9] = yb[i+17]/4096.f;
+ }
+
+ for (int row = 0; row < nr; row++) {
+ sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
+ }
+
+ yb += QK4_0 * 16;
+ }
+
+ for (int row = 0; row < nr; ++row) {
+ const float tot = simd_sum(sumf[row]);
+ if (tiisg == 0 && first_row + row < ne01) {
+ dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
+ }
+ }
+}
+
+kernel void kernel_mul_mv_q4_0_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
+}
+
+kernel void kernel_mul_mv_q4_1_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
+}
+
+kernel void kernel_mul_mv_q5_0_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
+}
+
+kernel void kernel_mul_mv_q5_1_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
+}
+
+
+#define NB_Q8_0 8
+
+void kernel_mul_mv_q8_0_f32_impl(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne10,
+ constant int64_t & ne12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ const int nr = N_DST;
+ const int nsg = N_SIMDGROUP;
+ const int nw = N_SIMDWIDTH;
+
+ const int nb = ne00/QK8_0;
+ const int r0 = tgpig.x;
+ const int r1 = tgpig.y;
+ const int im = tgpig.z;
+
+ const int first_row = (r0 * nsg + sgitg) * nr;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
+ device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float yl[NB_Q8_0];
+ float sumf[nr]={0.f};
+
+ const int ix = tiisg/4;
+ const int il = tiisg%4;
+
+ device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
+
+ // each thread in a SIMD group deals with NB_Q8_0 quants at a time
+ for (int ib = ix; ib < nb; ib += nw/4) {
+ for (int i = 0; i < NB_Q8_0; ++i) {
+ yl[i] = yb[i];
+ }
+
+ for (int row = 0; row < nr; row++) {
+ device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
+ float sumq = 0.f;
+ for (int iq = 0; iq < NB_Q8_0; ++iq) {
+ sumq += qs[iq] * yl[iq];
+ }
+ sumf[row] += sumq*x[ib+row*nb].d;
+ }
+
+ yb += NB_Q8_0 * nw;
+ }
+
+ for (int row = 0; row < nr; ++row) {
+ const float tot = simd_sum(sumf[row]);
+ if (tiisg == 0 && first_row + row < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
+ }
+ }
+}
+
+[[host_name("kernel_mul_mv_q8_0_f32")]]
+kernel void kernel_mul_mv_q8_0_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
+}
+
+#define N_F32_F32 4
+
+void kernel_mul_mv_f32_f32_impl(
+ device const char * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]]) {
+
+ const int64_t r0 = tgpig.x;
+ const int64_t rb = tgpig.y*N_F32_F32;
+ const int64_t im = tgpig.z;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
+
+ device const float * x = (device const float *) (src0 + offset0);
+
+ if (ne00 < 128) {
+ for (int row = 0; row < N_F32_F32; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
+
+ float sumf = 0;
+ for (int i = tiisg; i < ne00; i += 32) {
+ sumf += (float) x[i] * (float) y[i];
+ }
+
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ } else {
+ device const float4 * x4 = (device const float4 *)x;
+ for (int row = 0; row < N_F32_F32; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
+ device const float4 * y4 = (device const float4 *) y;
+
+ float sumf = 0;
+ for (int i = tiisg; i < ne00/4; i += 32) {
+ for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
+ }
+
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ }
+}
+
+[[host_name("kernel_mul_mv_f32_f32")]]
+kernel void kernel_mul_mv_f32_f32(
+ device const char * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]]) {
+ kernel_mul_mv_f32_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
+}
+
+#define N_F16_F16 4
+
+kernel void kernel_mul_mv_f16_f16(
+ device const char * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]]) {
+
+ const int64_t r0 = tgpig.x;
+ const int64_t rb = tgpig.y*N_F16_F16;
+ const int64_t im = tgpig.z;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
+
+ device const half * x = (device const half *) (src0 + offset0);
+
+ if (ne00 < 128) {
+ for (int row = 0; row < N_F16_F16; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
+
+ float sumf = 0;
+ for (int i = tiisg; i < ne00; i += 32) {
+ sumf += (half) x[i] * (half) y[i];
+ }
+
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ } else {
+ device const half4 * x4 = (device const half4 *)x;
+ for (int row = 0; row < N_F16_F16; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
+ device const half4 * y4 = (device const half4 *) y;
+
+ float sumf = 0;
+ for (int i = tiisg; i < ne00/4; i += 32) {
+ for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
+ }
+
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ }
+}
+
+void kernel_mul_mv_f16_f32_1row_impl(
+ device const char * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]]) {
+
+ const int64_t r0 = tgpig.x;
+ const int64_t r1 = tgpig.y;
+ const int64_t im = tgpig.z;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
+
+ device const half * x = (device const half *) (src0 + offset0);
+ device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
+
+ float sumf = 0;
+ if (ne00 < 128) {
+ for (int i = tiisg; i < ne00; i += 32) {
+ sumf += (float) x[i] * (float) y[i];
+ }
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ } else {
+ device const half4 * x4 = (device const half4 *) x;
+ device const float4 * y4 = (device const float4 *) y;
+ for (int i = tiisg; i < ne00/4; i += 32) {
+ for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
+ }
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+}
+
+[[host_name("kernel_mul_mv_f16_f32_1row")]]
+kernel void kernel_mul_mv_f16_f32_1row(
+ device const char * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]]) {
+ kernel_mul_mv_f16_f32_1row_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
+}
+
+#define N_F16_F32 4
+
+void kernel_mul_mv_f16_f32_impl(
+ device const char * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]]) {
+
+ const int64_t r0 = tgpig.x;
+ const int64_t rb = tgpig.y*N_F16_F32;
+ const int64_t im = tgpig.z;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
+
+ device const half * x = (device const half *) (src0 + offset0);
+
+ if (ne00 < 128) {
+ for (int row = 0; row < N_F16_F32; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
+
+ float sumf = 0;
+ for (int i = tiisg; i < ne00; i += 32) {
+ sumf += (float) x[i] * (float) y[i];
+ }
+
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ } else {
+ device const half4 * x4 = (device const half4 *)x;
+ for (int row = 0; row < N_F16_F32; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
+ device const float4 * y4 = (device const float4 *) y;
+
+ float sumf = 0;
+ for (int i = tiisg; i < ne00/4; i += 32) {
+ for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
+ }
+
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ }
+}
+
+[[host_name("kernel_mul_mv_f16_f32")]]
+kernel void kernel_mul_mv_f16_f32(
+ device const char * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]]) {
+ kernel_mul_mv_f16_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
+}
+
+// Assumes row size (ne00) is a multiple of 4
+kernel void kernel_mul_mv_f16_f32_l4(
+ device const char * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]]) {
+
+ const int nrows = ne11;
+ const int64_t r0 = tgpig.x;
+ const int64_t im = tgpig.z;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
+
+ device const half4 * x4 = (device const half4 *) (src0 + offset0);
+
+ for (int r1 = 0; r1 < nrows; ++r1) {
+ device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
+
+ float sumf = 0;
+ for (int i = tiisg; i < ne00/4; i += 32) {
+ for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
+ }
+
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+}
+
+kernel void kernel_alibi_f32(
+ device const float * src0,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ constant float & m0,
+ constant float & m1,
+ constant int & n_heads_log2_floor,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig[2];
+ const int64_t i02 = tgpig[1];
+ const int64_t i01 = tgpig[0];
+
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ const int64_t i3 = n / (ne2*ne1*ne0);
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ //const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
+
+ const int64_t k = i3*ne3 + i2;
+
+ float m_k;
+ if (k < n_heads_log2_floor) {
+ m_k = pow(m0, k + 1);
+ } else {
+ m_k = pow(m1, 2 * (k - n_heads_log2_floor) + 1);
+ }
+
+ device char * dst_row = (device char *) dst + i3*nb3 + i2*nb2 + i1*nb1;
+ device const char * src_row = (device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01;
+ for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
+ const float src_v = *(device float *)(src_row + i00*nb00);
+ device float * dst_v = (device float *)(dst_row + i00*nb0);
+ *dst_v = i00 * m_k + src_v;
+ }
+}
+
+static float rope_yarn_ramp(const float low, const float high, const int i0) {
+ const float y = (i0 / 2 - low) / max(0.001f, high - low);
+ return 1.0f - min(1.0f, max(0.0f, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static void rope_yarn(
+ float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
+ thread float * cos_theta, thread float * sin_theta
+) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
+ }
+ *cos_theta = cos(theta) * mscale;
+ *sin_theta = sin(theta) * mscale;
+}
+
+// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
+// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
+static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
+ return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base));
+}
+
+static void rope_yarn_corr_dims(
+ int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
+) {
+ // start and end correction dims
+ dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
+ dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
+}
+
+typedef void (rope_t)(
+ device const void * src0,
+ device const int32_t * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ constant int & n_past,
+ constant int & n_dims,
+ constant int & mode,
+ constant int & n_orig_ctx,
+ constant float & freq_base,
+ constant float & freq_scale,
+ constant float & ext_factor,
+ constant float & attn_factor,
+ constant float & beta_fast,
+ constant float & beta_slow,
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint3 tptg[[threads_per_threadgroup]],
+ uint3 tgpig[[threadgroup_position_in_grid]]);
+
+template<typename T>
+kernel void kernel_rope(
+ device const void * src0,
+ device const int32_t * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ constant int & n_past,
+ constant int & n_dims,
+ constant int & mode,
+ constant int & n_orig_ctx,
+ constant float & freq_base,
+ constant float & freq_scale,
+ constant float & ext_factor,
+ constant float & attn_factor,
+ constant float & beta_fast,
+ constant float & beta_slow,
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint3 tptg[[threads_per_threadgroup]],
+ uint3 tgpig[[threadgroup_position_in_grid]]) {
+ const int64_t i3 = tgpig[2];
+ const int64_t i2 = tgpig[1];
+ const int64_t i1 = tgpig[0];
+
+ const bool is_neox = mode & 2;
+
+ float corr_dims[2];
+ rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
+
+ device const int32_t * pos = src1;
+
+ const int64_t p = pos[i2];
+
+ const float theta_0 = (float)p;
+ const float inv_ndims = -1.f/n_dims;
+
+ if (!is_neox) {
+ for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
+
+ const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
+ float cos_theta, sin_theta;
+ rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ const T x0 = src[0];
+ const T x1 = src[1];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[1] = x0*sin_theta + x1*cos_theta;
+ }
+ } else {
+ for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
+ if (ic < n_dims) {
+ const int64_t ib = 0;
+
+ // simplified from `(ib * n_dims + ic) * inv_ndims`
+ const float cur_rot = inv_ndims*ic - ib;
+
+ const float theta = theta_0 * pow(freq_base, cur_rot);
+ float cos_theta, sin_theta;
+ rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const int64_t i0 = ib*n_dims + ic/2;
+
+ device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims/2];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
+ } else {
+ const int64_t i0 = ic;
+
+ device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+ }
+}
+
+template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
+template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
+
+kernel void kernel_im2col_f16(
+ device const float * x,
+ device half * dst,
+ constant int32_t & ofs0,
+ constant int32_t & ofs1,
+ constant int32_t & IW,
+ constant int32_t & IH,
+ constant int32_t & CHW,
+ constant int32_t & s0,
+ constant int32_t & s1,
+ constant int32_t & p0,
+ constant int32_t & p1,
+ constant int32_t & d0,
+ constant int32_t & d1,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tgpg[[threadgroups_per_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
+ const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
+
+ const int32_t offset_dst =
+ (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
+ (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst[offset_dst] = 0.0f;
+ } else {
+ const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
+ dst[offset_dst] = x[offset_src + iih * IW + iiw];
+ }
+}
+
+kernel void kernel_upscale_f32(
+ device const char * src0,
+ device char * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ constant int32_t & sf,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+
+ const int64_t i3 = tgpig.z;
+ const int64_t i2 = tgpig.y;
+ const int64_t i1 = tgpig.x;
+
+ const int64_t i03 = i3;
+ const int64_t i02 = i2;
+ const int64_t i01 = i1/sf;
+
+ device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
+ device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
+
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
+ dst_ptr[i0] = src0_ptr[i0/sf];
+ }
+}
+
+kernel void kernel_pad_f32(
+ device const char * src0,
+ device char * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+
+ const int64_t i3 = tgpig.z;
+ const int64_t i2 = tgpig.y;
+ const int64_t i1 = tgpig.x;
+
+ const int64_t i03 = i3;
+ const int64_t i02 = i2;
+ const int64_t i01 = i1;
+
+ device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
+ device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
+
+ if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
+ if (i0 < ne00) {
+ dst_ptr[i0] = src0_ptr[i0];
+ } else {
+ dst_ptr[i0] = 0.0f;
+ }
+ }
+
+ return;
+ }
+
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
+ dst_ptr[i0] = 0.0f;
+ }
+}
+
+// bitonic sort implementation following the CUDA kernels as reference
+typedef void (argsort_t)(
+ device const float * x,
+ device int32_t * dst,
+ constant int64_t & ncols,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]]);
+
+template<ggml_sort_order order>
+kernel void kernel_argsort_f32_i32(
+ device const float * x,
+ device int32_t * dst,
+ constant int64_t & ncols,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]]) {
+ // bitonic sort
+ int col = tpitg[0];
+ int row = tgpig[1];
+
+ if (col >= ncols) return;
+
+ device const float * x_row = x + row * ncols;
+ device int32_t * dst_row = dst + row * ncols;
+
+ // initialize indices
+ if (col < ncols) {
+ dst_row[col] = col;
+ }
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ for (int k = 2; k <= ncols; k *= 2) {
+ for (int j = k / 2; j > 0; j /= 2) {
+ int ixj = col ^ j;
+ if (ixj > col) {
+ if ((col & k) == 0) {
+ if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
+ SWAP(dst_row[col], dst_row[ixj]);
+ }
+ } else {
+ if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
+ SWAP(dst_row[col], dst_row[ixj]);
+ }
+ }
+ }
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ }
+ }
+}
+
+template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ASC>;
+template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_DESC>;
+
+kernel void kernel_leaky_relu_f32(
+ device const float * src0,
+ device float * dst,
+ constant float & slope,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
+}
+
+kernel void kernel_cpy_f16_f16(
+ device const half * src0,
+ device half * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig[2];
+ const int64_t i02 = tgpig[1];
+ const int64_t i01 = tgpig[0];
+
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ const int64_t i3 = n / (ne2*ne1*ne0);
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
+
+ device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
+ device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+ dst_data[i00] = src[0];
+ }
+}
+
+kernel void kernel_cpy_f16_f32(
+ device const half * src0,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig[2];
+ const int64_t i02 = tgpig[1];
+ const int64_t i01 = tgpig[0];
+
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ const int64_t i3 = n / (ne2*ne1*ne0);
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
+
+ device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
+ device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+ dst_data[i00] = src[0];
+ }
+}
+
+kernel void kernel_cpy_f32_f16(
+ device const float * src0,
+ device half * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig[2];
+ const int64_t i02 = tgpig[1];
+ const int64_t i01 = tgpig[0];
+
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ const int64_t i3 = n / (ne2*ne1*ne0);
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
+
+ device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
+ device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+
+ dst_data[i00] = src[0];
+ }
+}
+
+kernel void kernel_cpy_f32_f32(
+ device const float * src0,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig[2];
+ const int64_t i02 = tgpig[1];
+ const int64_t i01 = tgpig[0];
+
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ const int64_t i3 = n / (ne2*ne1*ne0);
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
+
+ device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
+ device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+
+ dst_data[i00] = src[0];
+ }
+}
+
+kernel void kernel_cpy_f32_q8_0(
+ device const float * src0,
+ device void * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig[2];
+ const int64_t i02 = tgpig[1];
+ const int64_t i01 = tgpig[0];
+
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ const int64_t i3 = n / (ne2*ne1*ne0);
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0;
+
+ device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) {
+ device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+
+ float amax = 0.0f; // absolute max
+
+ for (int j = 0; j < QK8_0; j++) {
+ const float v = src[j];
+ amax = MAX(amax, fabs(v));
+ }
+
+ const float d = amax / ((1 << 7) - 1);
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dst_data[i00/QK8_0].d = d;
+
+ for (int j = 0; j < QK8_0; ++j) {
+ const float x0 = src[j]*id;
+
+ dst_data[i00/QK8_0].qs[j] = round(x0);
+ }
+ }
+}
+
+kernel void kernel_cpy_f32_q4_0(
+ device const float * src0,
+ device void * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig[2];
+ const int64_t i02 = tgpig[1];
+ const int64_t i01 = tgpig[0];
+
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ const int64_t i3 = n / (ne2*ne1*ne0);
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0;
+
+ device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) {
+ device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+
+ float amax = 0.0f; // absolute max
+ float max = 0.0f;
+
+ for (int j = 0; j < QK4_0; j++) {
+ const float v = src[j];
+ if (amax < fabs(v)) {
+ amax = fabs(v);
+ max = v;
+ }
+ }
+
+ const float d = max / -8;
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dst_data[i00/QK4_0].d = d;
+
+ for (int j = 0; j < QK4_0/2; ++j) {
+ const float x0 = src[0 + j]*id;
+ const float x1 = src[QK4_0/2 + j]*id;
+
+ const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
+ const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
+
+ dst_data[i00/QK4_0].qs[j] = xi0;
+ dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
+ }
+ }
+}
+
+kernel void kernel_cpy_f32_q4_1(
+ device const float * src0,
+ device void * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int64_t i03 = tgpig[2];
+ const int64_t i02 = tgpig[1];
+ const int64_t i01 = tgpig[0];
+
+ const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ const int64_t i3 = n / (ne2*ne1*ne0);
+ const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1;
+
+ device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) {
+ device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+
+ float min = FLT_MAX;
+ float max = -FLT_MAX;
+
+ for (int j = 0; j < QK4_1; j++) {
+ const float v = src[j];
+ if (min > v) min = v;
+ if (max < v) max = v;
+ }
+
+ const float d = (max - min) / ((1 << 4) - 1);
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dst_data[i00/QK4_1].d = d;
+ dst_data[i00/QK4_1].m = min;
+
+ for (int j = 0; j < QK4_1/2; ++j) {
+ const float x0 = (src[0 + j] - min)*id;
+ const float x1 = (src[QK4_1/2 + j] - min)*id;
+
+ const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
+ const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
+
+ dst_data[i00/QK4_1].qs[j] = xi0;
+ dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
+ }
+ }
+}
+
+kernel void kernel_concat(
+ device const char * src0,
+ device const char * src1,
+ device char * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne03,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant uint64_t & nb03,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant uint64_t & nb13,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant int64_t & ne2,
+ constant int64_t & ne3,
+ constant uint64_t & nb0,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ constant uint64_t & nb3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+
+ const int64_t i03 = tgpig.z;
+ const int64_t i02 = tgpig.y;
+ const int64_t i01 = tgpig.x;
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+
+ device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
+ device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
+ device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
+
+ for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
+ if (i02 < ne02) {
+ ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
+ src0_ptr += ntg.x*nb00;
+ } else {
+ ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
+ src1_ptr += ntg.x*nb10;
+ }
+ dst_ptr += ntg.x*nb0;
+ }
+}
+
+//============================================ k-quants ======================================================
+
+#ifndef QK_K
+#define QK_K 256
+#else
+static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64");
+#endif
+
+#if QK_K == 256
+#define K_SCALE_SIZE 12
+#else
+#define K_SCALE_SIZE 4
+#endif
+
+typedef struct {
+ uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
+ uint8_t qs[QK_K/4]; // quants
+ half d; // super-block scale for quantized scales
+ half dmin; // super-block scale for quantized mins
+} block_q2_K;
+// 84 bytes / block
+
+typedef struct {
+ uint8_t hmask[QK_K/8]; // quants - high bit
+ uint8_t qs[QK_K/4]; // quants - low 2 bits
+#if QK_K == 64
+ uint8_t scales[2];
+#else
+ uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
+#endif
+ half d; // super-block scale
+} block_q3_K;
+
+#if QK_K == 64
+typedef struct {
+ half d[2]; // super-block scales/mins
+ uint8_t scales[2];
+ uint8_t qs[QK_K/2]; // 4-bit quants
+} block_q4_K;
+#else
+typedef struct {
+ half d; // super-block scale for quantized scales
+ half dmin; // super-block scale for quantized mins
+ uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
+ uint8_t qs[QK_K/2]; // 4--bit quants
+} block_q4_K;
+#endif
+
+#if QK_K == 64
+typedef struct {
+ half d; // super-block scales/mins
+ int8_t scales[QK_K/16]; // 8-bit block scales
+ uint8_t qh[QK_K/8]; // quants, high bit
+ uint8_t qs[QK_K/2]; // quants, low 4 bits
+} block_q5_K;
+#else
+typedef struct {
+ half d; // super-block scale for quantized scales
+ half dmin; // super-block scale for quantized mins
+ uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
+ uint8_t qh[QK_K/8]; // quants, high bit
+ uint8_t qs[QK_K/2]; // quants, low 4 bits
+} block_q5_K;
+// 176 bytes / block
+#endif
+
+typedef struct {
+ uint8_t ql[QK_K/2]; // quants, lower 4 bits
+ uint8_t qh[QK_K/4]; // quants, upper 2 bits
+ int8_t scales[QK_K/16]; // scales, quantized with 8 bits
+ half d; // super-block scale
+} block_q6_K;
+// 210 bytes / block
+
+//====================================== dot products =========================
+
+void kernel_mul_mv_q2_K_f32_impl(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne10,
+ constant int64_t & ne12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ const int nb = ne00/QK_K;
+ const int r0 = tgpig.x;
+ const int r1 = tgpig.y;
+ const int im = tgpig.z;
+
+ const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
+ const int ib_row = first_row * nb;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0;
+ device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float yl[32];
+ float sumf[N_DST]={0.f}, all_sum;
+
+ const int step = sizeof(block_q2_K) * nb;
+
+#if QK_K == 256
+ const int ix = tiisg/8; // 0...3
+ const int it = tiisg%8; // 0...7
+ const int iq = it/4; // 0 or 1
+ const int ir = it%4; // 0...3
+ const int is = (8*ir)/16;// 0 or 1
+
+ device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir;
+
+ for (int ib = ix; ib < nb; ib += 4) {
+
+ float4 sumy = {0.f, 0.f, 0.f, 0.f};
+ for (int i = 0; i < 8; ++i) {
+ yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
+ yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
+ yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
+ yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
+ }
+
+ device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is;
+ device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
+ device const half * dh = &x[ib].d;
+
+ for (int row = 0; row < N_DST; row++) {
+
+ float4 acc1 = {0.f, 0.f, 0.f, 0.f};
+ float4 acc2 = {0.f, 0.f, 0.f, 0.f};
+ for (int i = 0; i < 8; i += 2) {
+ acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
+ acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
+ acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
+ acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
+ acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
+ acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
+ acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
+ acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
+ }
+ float dall = dh[0];
+ float dmin = dh[1] * 1.f/16.f;
+ sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
+ (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
+ (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
+ (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
+ dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
+
+ qs += step/2;
+ sc += step;
+ dh += step/2;
+ }
+
+ y4 += 4 * QK_K;
+ }
+#else
+ const int ix = tiisg/2; // 0...15
+ const int it = tiisg%2; // 0...1
+
+ device const float * y4 = y + ix * QK_K + 8 * it;
+
+ for (int ib = ix; ib < nb; ib += 16) {
+
+ float4 sumy = {0.f, 0.f, 0.f, 0.f};
+ for (int i = 0; i < 8; ++i) {
+ yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
+ yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
+ yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
+ yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
+ }
+
+ device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
+ device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
+ device const half * dh = &x[ib].d;
+
+ for (int row = 0; row < N_DST; row++) {
+
+ float4 acc1 = {0.f, 0.f, 0.f, 0.f};
+ float4 acc2 = {0.f, 0.f, 0.f, 0.f};
+ for (int i = 0; i < 8; i += 2) {
+ acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
+ acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
+ acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
+ acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
+ acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
+ acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
+ acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
+ acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
+ }
+
+ float dall = dh[0];
+ float dmin = dh[1];
+ sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
+ (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
+ (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
+ (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
+ dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
+
+ qs += step/2;
+ sc += step;
+ dh += step/2;
+ }
+
+ y4 += 16 * QK_K;
+ }
+#endif
+
+ for (int row = 0; row < N_DST; ++row) {
+ all_sum = simd_sum(sumf[row]);
+ if (tiisg == 0) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
+ }
+ }
+}
+
+[[host_name("kernel_mul_mv_q2_K_f32")]]
+kernel void kernel_mul_mv_q2_K_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
+}
+
+#if QK_K == 256
+void kernel_mul_mv_q3_K_f32_impl(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne10,
+ constant int64_t & ne12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ const int nb = ne00/QK_K;
+
+ const int64_t r0 = tgpig.x;
+ const int64_t r1 = tgpig.y;
+ const int64_t im = tgpig.z;
+
+ const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
+ device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float yl[32];
+
+ //const uint16_t kmask1 = 0x3030;
+ //const uint16_t kmask2 = 0x0f0f;
+
+ const int tid = tiisg/4;
+ const int ix = tiisg%4;
+ const int ip = tid/4; // 0 or 1
+ const int il = 2*((tid%4)/2); // 0 or 2
+ const int ir = tid%2;
+ const int n = 8;
+ const int l0 = n*ir;
+
+ // One would think that the Metal compiler would figure out that ip and il can only have
+ // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
+ // with these two tales.
+ //
+ // Possible masks for the high bit
+ const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
+ {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
+ {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
+ {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
+
+ // Possible masks for the low 2 bits
+ const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
+
+ const ushort4 hm = mm[2*ip + il/2];
+
+ const int shift = 2*il;
+ const float v1 = il == 0 ? 4.f : 64.f;
+ const float v2 = 4.f * v1;
+
+ const uint16_t s_shift1 = 4*ip;
+ const uint16_t s_shift2 = s_shift1 + il;
+
+ const int q_offset = 32*ip + l0;
+ const int y_offset = 128*ip + 32*il + l0;
+
+ const int step = sizeof(block_q3_K) * nb / 2;
+
+ device const float * y1 = yy + ix*QK_K + y_offset;
+
+ uint32_t scales32, aux32;
+ thread uint16_t * scales16 = (thread uint16_t *)&scales32;
+ thread const int8_t * scales = (thread const int8_t *)&scales32;
+
+ float sumf1[2] = {0.f};
+ float sumf2[2] = {0.f};
+ for (int i = ix; i < nb; i += 4) {
+
+ for (int l = 0; l < 8; ++l) {
+ yl[l+ 0] = y1[l+ 0];
+ yl[l+ 8] = y1[l+16];
+ yl[l+16] = y1[l+32];
+ yl[l+24] = y1[l+48];
+ }
+
+ device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
+ device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
+ device const uint16_t * a = (device const uint16_t *)(x[i].scales);
+ device const half * dh = &x[i].d;
+
+ for (int row = 0; row < 2; ++row) {
+
+ const float d_all = (float)dh[0];
+
+ scales16[0] = a[4];
+ scales16[1] = a[5];
+ aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
+ scales16[0] = a[il+0];
+ scales16[1] = a[il+1];
+ scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
+
+ float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
+ for (int l = 0; l < n; l += 2) {
+ const int32_t qs = q[l/2];
+ s1 += yl[l+0] * (qs & qm[il/2][0]);
+ s2 += yl[l+1] * (qs & qm[il/2][1]);
+ s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
+ s4 += yl[l+16] * (qs & qm[il/2][2]);
+ s5 += yl[l+17] * (qs & qm[il/2][3]);
+ s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
+ }
+ float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
+ float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
+ sumf1[row] += d1 * (scales[0] - 32);
+ sumf2[row] += d2 * (scales[2] - 32);
+
+ s1 = s2 = s3 = s4 = s5 = s6 = 0;
+ for (int l = 0; l < n; l += 2) {
+ const int32_t qs = q[l/2+8];
+ s1 += yl[l+8] * (qs & qm[il/2][0]);
+ s2 += yl[l+9] * (qs & qm[il/2][1]);
+ s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
+ s4 += yl[l+24] * (qs & qm[il/2][2]);
+ s5 += yl[l+25] * (qs & qm[il/2][3]);
+ s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
+ }
+ d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
+ d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
+ sumf1[row] += d1 * (scales[1] - 32);
+ sumf2[row] += d2 * (scales[3] - 32);
+
+ q += step;
+ h += step;
+ a += step;
+ dh += step;
+
+ }
+
+ y1 += 4 * QK_K;
+
+ }
+
+ for (int row = 0; row < 2; ++row) {
+ const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
+ sumf1[row] = simd_sum(sumf);
+ }
+ if (tiisg == 0) {
+ for (int row = 0; row < 2; ++row) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row];
+ }
+ }
+}
+#else
+void kernel_mul_mv_q3_K_f32_impl(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne10,
+ constant int64_t & ne12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ const int nb = ne00/QK_K;
+
+ const int64_t r0 = tgpig.x;
+ const int64_t r1 = tgpig.y;
+ const int64_t im = tgpig.z;
+
+ const int row = 2 * r0 + sgitg;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
+ device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ const int ix = tiisg/4;
+ const int il = 4 * (tiisg%4);// 0, 4, 8, 12
+ const int iq = il/8; // 0, 0, 1, 1
+ const int in = il%8; // 0, 4, 0, 4
+
+ float2 sum = {0.f, 0.f};
+
+ for (int i = ix; i < nb; i += 8) {
+
+ const float d_all = (float)(x[i].d);
+
+ device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
+ device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
+ device const uint16_t * s = (device const uint16_t *)(x[i].scales);
+ device const float * y = yy + i * QK_K + il;
+
+ const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
+ const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
+ const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
+ const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
+
+ for (int l = 0; l < 4; l += 2) {
+ const uint16_t hm = h[l/2] >> iq;
+ sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
+ + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
+ + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
+ + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
+ sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
+ + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
+ + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
+ + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
+ }
+
+ }
+ const float sumf = sum[0] + sum[1] * 1.f/256.f;
+
+ const float tot = simd_sum(sumf);
+ if (tiisg == 0) {
+ dst[r1*ne0 + im*ne0*ne1 + row] = tot;
+ }
+
+}
+#endif
+
+[[host_name("kernel_mul_mv_q3_K_f32")]]
+kernel void kernel_mul_mv_q3_K_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
+}
+
+#if QK_K == 256
+void kernel_mul_mv_q4_K_f32_impl(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne10,
+ constant int64_t & ne12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ const uint16_t kmask1 = 0x3f3f;
+ const uint16_t kmask2 = 0x0f0f;
+ const uint16_t kmask3 = 0xc0c0;
+
+ const int ix = tiisg/8; // 0...3
+ const int it = tiisg%8; // 0...7
+ const int iq = it/4; // 0 or 1
+ const int ir = it%4; // 0...3
+
+ const int nb = ne00/QK_K;
+ const int r0 = tgpig.x;
+ const int r1 = tgpig.y;
+ const int im = tgpig.z;
+ //const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
+ const int first_row = r0 * N_DST;
+ const int ib_row = first_row * nb;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
+ device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float yl[16];
+ float yh[16];
+ float sumf[N_DST]={0.f}, all_sum;
+
+ const int step = sizeof(block_q4_K) * nb / 2;
+
+ device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir;
+
+ uint16_t sc16[4];
+ thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
+
+ for (int ib = ix; ib < nb; ib += 4) {
+
+ float4 sumy = {0.f, 0.f, 0.f, 0.f};
+ for (int i = 0; i < 8; ++i) {
+ yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
+ yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
+ yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
+ yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
+ }
+
+ device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq;
+ device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
+ device const half * dh = &x[ib].d;
+
+ for (int row = 0; row < N_DST; row++) {
+
+ sc16[0] = sc[0] & kmask1;
+ sc16[1] = sc[2] & kmask1;
+ sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
+ sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
+
+ device const uint16_t * q2 = q1 + 32;
+
+ float4 acc1 = {0.f, 0.f, 0.f, 0.f};
+ float4 acc2 = {0.f, 0.f, 0.f, 0.f};
+ for (int i = 0; i < 8; i += 2) {
+ acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
+ acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
+ acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
+ acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
+ acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
+ acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
+ acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
+ acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
+ }
+
+ float dall = dh[0];
+ float dmin = dh[1];
+ sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
+ (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
+ (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
+ (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
+ dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
+
+ q1 += step;
+ sc += step;
+ dh += step;
+ }
+
+ y4 += 4 * QK_K;
+ }
+
+ for (int row = 0; row < N_DST; ++row) {
+ all_sum = simd_sum(sumf[row]);
+ if (tiisg == 0) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
+ }
+ }
+}
+#else
+void kernel_mul_mv_q4_K_f32_impl(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne10,
+ constant int64_t & ne12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ const int ix = tiisg/4; // 0...7
+ const int it = tiisg%4; // 0...3
+
+ const int nb = ne00/QK_K;
+ const int r0 = tgpig.x;
+ const int r1 = tgpig.y;
+ const int im = tgpig.z;
+ const int first_row = r0 * N_DST;
+ const int ib_row = first_row * nb;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
+ device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float yl[8];
+ float yh[8];
+ float sumf[N_DST]={0.f}, all_sum;
+
+ const int step = sizeof(block_q4_K) * nb / 2;
+
+ device const float * y4 = y + ix * QK_K + 8 * it;
+
+ uint16_t sc16[4];
+
+ for (int ib = ix; ib < nb; ib += 8) {
+
+ float2 sumy = {0.f, 0.f};
+ for (int i = 0; i < 8; ++i) {
+ yl[i] = y4[i+ 0]; sumy[0] += yl[i];
+ yh[i] = y4[i+32]; sumy[1] += yh[i];
+ }
+
+ device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
+ device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
+ device const half * dh = x[ib].d;
+
+ for (int row = 0; row < N_DST; row++) {
+
+ sc16[0] = sc[0] & 0x000f;
+ sc16[1] = sc[0] & 0x0f00;
+ sc16[2] = sc[0] & 0x00f0;
+ sc16[3] = sc[0] & 0xf000;
+
+ float2 acc1 = {0.f, 0.f};
+ float2 acc2 = {0.f, 0.f};
+ for (int i = 0; i < 8; i += 2) {
+ acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
+ acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
+ acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
+ acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
+ }
+
+ float dall = dh[0];
+ float dmin = dh[1];
+ sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
+ (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
+ dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
+
+ qs += step;
+ sc += step;
+ dh += step;
+ }
+
+ y4 += 8 * QK_K;
+ }
+
+ for (int row = 0; row < N_DST; ++row) {
+ all_sum = simd_sum(sumf[row]);
+ if (tiisg == 0) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
+ }
+ }
+}
+#endif
+
+[[host_name("kernel_mul_mv_q4_K_f32")]]
+kernel void kernel_mul_mv_q4_K_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
+}
+
+void kernel_mul_mv_q5_K_f32_impl(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne10,
+ constant int64_t & ne12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ const int nb = ne00/QK_K;
+
+ const int64_t r0 = tgpig.x;
+ const int64_t r1 = tgpig.y;
+ const int im = tgpig.z;
+
+ const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0;
+ device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float sumf[2]={0.f};
+
+ const int step = sizeof(block_q5_K) * nb;
+
+#if QK_K == 256
+#
+ float yl[16], yh[16];
+
+ const uint16_t kmask1 = 0x3f3f;
+ const uint16_t kmask2 = 0x0f0f;
+ const uint16_t kmask3 = 0xc0c0;
+
+ const int tid = tiisg/4;
+ const int ix = tiisg%4;
+ const int iq = tid/4;
+ const int ir = tid%4;
+ const int n = 8;
+
+ const int l0 = n*ir;
+ const int q_offset = 32*iq + l0;
+ const int y_offset = 64*iq + l0;
+
+ const uint8_t hm1 = 1u << (2*iq);
+ const uint8_t hm2 = hm1 << 1;
+ const uint8_t hm3 = hm1 << 4;
+ const uint8_t hm4 = hm2 << 4;
+
+ uint16_t sc16[4];
+ thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
+
+ device const float * y1 = yy + ix*QK_K + y_offset;
+
+ for (int i = ix; i < nb; i += 4) {
+
+ device const uint8_t * q1 = x[i].qs + q_offset;
+ device const uint8_t * qh = x[i].qh + l0;
+ device const half * dh = &x[i].d;
+ device const uint16_t * a = (device const uint16_t *)x[i].scales + iq;
+
+ device const float * y2 = y1 + 128;
+ float4 sumy = {0.f, 0.f, 0.f, 0.f};
+ for (int l = 0; l < 8; ++l) {
+ yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
+ yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
+ yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
+ yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
+ }
+
+ for (int row = 0; row < 2; ++row) {
+
+ device const uint8_t * q2 = q1 + 64;
+
+ sc16[0] = a[0] & kmask1;
+ sc16[1] = a[2] & kmask1;
+ sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
+ sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
+
+ float4 acc1 = {0.f};
+ float4 acc2 = {0.f};
+ for (int l = 0; l < n; ++l) {
+ uint8_t h = qh[l];
+ acc1[0] += yl[l+0] * (q1[l] & 0x0F);
+ acc1[1] += yl[l+8] * (q1[l] & 0xF0);
+ acc1[2] += yh[l+0] * (q2[l] & 0x0F);
+ acc1[3] += yh[l+8] * (q2[l] & 0xF0);
+ acc2[0] += h & hm1 ? yl[l+0] : 0.f;
+ acc2[1] += h & hm2 ? yl[l+8] : 0.f;
+ acc2[2] += h & hm3 ? yh[l+0] : 0.f;
+ acc2[3] += h & hm4 ? yh[l+8] : 0.f;
+ }
+ const float dall = dh[0];
+ const float dmin = dh[1];
+ sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
+ sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
+ sc8[4] * (acc1[2] + 16.f*acc2[2]) +
+ sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
+ dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
+
+ q1 += step;
+ qh += step;
+ dh += step/2;
+ a += step/2;
+
+ }
+
+ y1 += 4 * QK_K;
+
+ }
+#else
+ float yl[8], yh[8];
+
+ const int il = 4 * (tiisg/8); // 0, 4, 8, 12
+ const int ix = tiisg%8;
+ const int iq = il/8; // 0, 0, 1, 1
+ const int in = il%8; // 0, 4, 0, 4
+
+ device const float * y = yy + ix*QK_K + il;
+
+ for (int i = ix; i < nb; i += 8) {
+
+ for (int l = 0; l < 4; ++l) {
+ yl[l+0] = y[l+ 0];
+ yl[l+4] = y[l+16];
+ yh[l+0] = y[l+32];
+ yh[l+4] = y[l+48];
+ }
+
+ device const half * dh = &x[i].d;
+ device const uint8_t * q = x[i].qs + il;
+ device const uint8_t * h = x[i].qh + in;
+ device const int8_t * s = x[i].scales;
+
+ for (int row = 0; row < 2; ++row) {
+
+ const float d = dh[0];
+
+ float2 acc = {0.f, 0.f};
+ for (int l = 0; l < 4; ++l) {
+ const uint8_t hl = h[l] >> iq;
+ acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
+ + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
+ acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
+ + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
+ }
+ sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
+
+ q += step;
+ h += step;
+ s += step;
+ dh += step/2;
+
+ }
+
+ y += 8 * QK_K;
+ }
+#endif
+
+ for (int row = 0; row < 2; ++row) {
+ const float tot = simd_sum(sumf[row]);
+ if (tiisg == 0) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
+ }
+ }
+}
+
+[[host_name("kernel_mul_mv_q5_K_f32")]]
+kernel void kernel_mul_mv_q5_K_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
+}
+
+void kernel_mul_mv_q6_K_f32_impl(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant int64_t & ne10,
+ constant int64_t & ne12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ const uint8_t kmask1 = 0x03;
+ const uint8_t kmask2 = 0x0C;
+ const uint8_t kmask3 = 0x30;
+ const uint8_t kmask4 = 0xC0;
+
+ const int nb = ne00/QK_K;
+
+ const int64_t r0 = tgpig.x;
+ const int64_t r1 = tgpig.y;
+ const int im = tgpig.z;
+
+ const int row = 2 * r0 + sgitg;
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0;
+ device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float sumf = 0;
+
+#if QK_K == 256
+ const int tid = tiisg/2;
+ const int ix = tiisg%2;
+ const int ip = tid/8; // 0 or 1
+ const int il = tid%8;
+ const int n = 4;
+ const int l0 = n*il;
+ const int is = 8*ip + l0/16;
+
+ const int y_offset = 128*ip + l0;
+ const int q_offset_l = 64*ip + l0;
+ const int q_offset_h = 32*ip + l0;
+
+ for (int i = ix; i < nb; i += 2) {
+
+ device const uint8_t * q1 = x[i].ql + q_offset_l;
+ device const uint8_t * q2 = q1 + 32;
+ device const uint8_t * qh = x[i].qh + q_offset_h;
+ device const int8_t * sc = x[i].scales + is;
+
+ device const float * y = yy + i * QK_K + y_offset;
+
+ const float dall = x[i].d;
+
+ float4 sums = {0.f, 0.f, 0.f, 0.f};
+ for (int l = 0; l < n; ++l) {
+ sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
+ sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
+ sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
+ sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
+ }
+
+ sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
+
+ }
+
+#else
+ const int ix = tiisg/4;
+ const int il = 4*(tiisg%4);
+
+ for (int i = ix; i < nb; i += 8) {
+ device const float * y = yy + i * QK_K + il;
+ device const uint8_t * ql = x[i].ql + il;
+ device const uint8_t * qh = x[i].qh + il;
+ device const int8_t * s = x[i].scales;
+
+ const float d = x[i].d;
+
+ float4 sums = {0.f, 0.f, 0.f, 0.f};
+ for (int l = 0; l < 4; ++l) {
+ sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
+ sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
+ sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
+ sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
+ }
+ sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
+ }
+
+#endif
+
+ const float tot = simd_sum(sumf);
+ if (tiisg == 0) {
+ dst[r1*ne0 + im*ne0*ne1 + row] = tot;
+ }
+}
+
+[[host_name("kernel_mul_mv_q6_K_f32")]]
+kernel void kernel_mul_mv_q6_K_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
+}
+
+//============================= templates and their specializations =============================
+
+// NOTE: this is not dequantizing - we are simply fitting the template
+template <typename type4x4>
+void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
+ float4x4 temp = *(((device float4x4 *)src));
+ for (int i = 0; i < 16; i++){
+ reg[i/4][i%4] = temp[i/4][i%4];
+ }
+}
+
+template <typename type4x4>
+void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
+ half4x4 temp = *(((device half4x4 *)src));
+ for (int i = 0; i < 16; i++){
+ reg[i/4][i%4] = temp[i/4][i%4];
+ }
+}
+
+template <typename type4x4>
+void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
+ device const uint16_t * qs = ((device const uint16_t *)xb + 1);
+ const float d1 = il ? (xb->d / 16.h) : xb->d;
+ const float d2 = d1 / 256.f;
+ const float md = -8.h * xb->d;
+ const ushort mask0 = il ? 0x00F0 : 0x000F;
+ const ushort mask1 = mask0 << 8;
+
+ for (int i=0;i<8;i++) {
+ reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
+ reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
+ }
+}
+
+template <typename type4x4>
+void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
+ device const uint16_t * qs = ((device const uint16_t *)xb + 2);
+ const float d1 = il ? (xb->d / 16.h) : xb->d;
+ const float d2 = d1 / 256.f;
+ const float m = xb->m;
+ const ushort mask0 = il ? 0x00F0 : 0x000F;
+ const ushort mask1 = mask0 << 8;
+
+ for (int i=0;i<8;i++) {
+ reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
+ reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
+ }
+}
+
+template <typename type4x4>
+void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
+ device const uint16_t * qs = ((device const uint16_t *)xb + 3);
+ const float d = xb->d;
+ const float md = -16.h * xb->d;
+ const ushort mask = il ? 0x00F0 : 0x000F;
+
+ const uint32_t qh = *((device const uint32_t *)xb->qh);
+
+ const int x_mv = il ? 4 : 0;
+
+ const int gh_mv = il ? 12 : 0;
+ const int gh_bk = il ? 0 : 4;
+
+ for (int i = 0; i < 8; i++) {
+ // extract the 5-th bits for x0 and x1
+ const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
+ const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
+
+ // combine the 4-bits from qs with the 5th bit
+ const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
+ const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
+
+ reg[i/2][2*(i%2)+0] = d * x0 + md;
+ reg[i/2][2*(i%2)+1] = d * x1 + md;
+ }
+}
+
+template <typename type4x4>
+void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
+ device const uint16_t * qs = ((device const uint16_t *)xb + 4);
+ const float d = xb->d;
+ const float m = xb->m;
+ const ushort mask = il ? 0x00F0 : 0x000F;
+
+ const uint32_t qh = *((device const uint32_t *)xb->qh);
+
+ const int x_mv = il ? 4 : 0;
+
+ const int gh_mv = il ? 12 : 0;
+ const int gh_bk = il ? 0 : 4;
+
+ for (int i = 0; i < 8; i++) {
+ // extract the 5-th bits for x0 and x1
+ const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
+ const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
+
+ // combine the 4-bits from qs with the 5th bit
+ const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
+ const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
+
+ reg[i/2][2*(i%2)+0] = d * x0 + m;
+ reg[i/2][2*(i%2)+1] = d * x1 + m;
+ }
+}
+
+template <typename type4x4>
+void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
+ device const int8_t * qs = ((device const int8_t *)xb->qs);
+ const half d = xb->d;
+
+ for (int i = 0; i < 16; i++) {
+ reg[i/4][i%4] = (qs[i + 16*il] * d);
+ }
+}
+
+template <typename type4x4>
+void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
+ const float d = xb->d;
+ const float min = xb->dmin;
+ device const uint8_t * q = (device const uint8_t *)xb->qs;
+ float dl, ml;
+ uint8_t sc = xb->scales[il];
+
+#if QK_K == 256
+ q = q + 32*(il/8) + 16*(il&1);
+ il = (il/2)%4;
+#endif
+ half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
+ uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
+ dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
+ for (int i = 0; i < 16; ++i) {
+ reg[i/4][i%4] = dl * (q[i] & mask) - ml;
+ }
+}
+
+template <typename type4x4>
+void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
+ const half d_all = xb->d;
+ device const uint8_t * q = (device const uint8_t *)xb->qs;
+ device const uint8_t * h = (device const uint8_t *)xb->hmask;
+ device const int8_t * scales = (device const int8_t *)xb->scales;
+
+#if QK_K == 256
+ q = q + 32 * (il/8) + 16 * (il&1);
+ h = h + 16 * (il&1);
+ uint8_t m = 1 << (il/2);
+ uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
+ ((il/4)>0 ? 12 : 3);
+ uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
+ uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
+ int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
+ : (scale_2&kmask2) | ((scale_1&kmask1) << 4);
+ half dl = il<8 ? d_all * (dl_int - 32.h) : d_all * (dl_int / 16.h - 32.h);
+ const half ml = 4.h * dl;
+
+ il = (il/2) & 3;
+ const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
+ const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
+ dl *= coef;
+
+ for (int i = 0; i < 16; ++i) {
+ reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
+ }
+#else
+ float kcoef = il&1 ? 1.f/16.f : 1.f;
+ uint16_t kmask = il&1 ? 0xF0 : 0x0F;
+ float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
+ float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
+ uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
+ uint8_t m = 1<<(il*2);
+ for (int i = 0; i < 16; ++i) {
+ reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
+ }
+#endif
+}
+
+static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
+ return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
+ : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
+}
+
+template <typename type4x4>
+void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
+ device const uchar * q = xb->qs;
+
+#if QK_K == 256
+ short is = (il/4) * 2;
+ q = q + (il/4) * 32 + 16 * (il&1);
+ il = il & 3;
+ const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
+ const float d = il < 2 ? xb->d : xb->d / 16.h;
+ const float min = xb->dmin;
+ const float dl = d * sc[0];
+ const float ml = min * sc[1];
+#else
+ q = q + 16 * (il&1);
+ device const uint8_t * s = xb->scales;
+ device const half2 * dh = (device const half2 *)xb->d;
+ const float2 d = (float2)dh[0];
+ const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
+ const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
+#endif
+ const ushort mask = il<2 ? 0x0F : 0xF0;
+ for (int i = 0; i < 16; ++i) {
+ reg[i/4][i%4] = dl * (q[i] & mask) - ml;
+ }
+}
+
+template <typename type4x4>
+void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
+ device const uint8_t * q = xb->qs;
+ device const uint8_t * qh = xb->qh;
+
+#if QK_K == 256
+ short is = (il/4) * 2;
+ q = q + 32 * (il/4) + 16 * (il&1);
+ qh = qh + 16 * (il&1);
+ uint8_t ul = 1 << (il/2);
+ il = il & 3;
+ const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
+ const float d = il < 2 ? xb->d : xb->d / 16.h;
+ const float min = xb->dmin;
+ const float dl = d * sc[0];
+ const float ml = min * sc[1];
+
+ const ushort mask = il<2 ? 0x0F : 0xF0;
+ const float qh_val = il<2 ? 16.f : 256.f;
+ for (int i = 0; i < 16; ++i) {
+ reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
+ }
+#else
+ q = q + 16 * (il&1);
+ device const int8_t * s = xb->scales;
+ const float dl = xb->d * s[il];
+ uint8_t m = 1<<(il*2);
+ const float coef = il<2 ? 1.f : 1.f/16.f;
+ const ushort mask = il<2 ? 0x0F : 0xF0;
+ for (int i = 0; i < 16; ++i) {
+ reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
+ }
+#endif
+}
+
+template <typename type4x4>
+void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
+ const half d_all = xb->d;
+ device const uint8_t * ql = (device const uint8_t *)xb->ql;
+ device const uint8_t * qh = (device const uint8_t *)xb->qh;
+ device const int8_t * scales = (device const int8_t *)xb->scales;
+
+#if QK_K == 256
+ ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
+ qh = qh + 32*(il/8) + 16*(il&1);
+ half sc = scales[(il%2) + 2 * ((il/2))];
+ il = (il/2) & 3;
+#else
+ ql = ql + 16 * (il&1);
+ half sc = scales[il];
+#endif
+ const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
+ const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
+ const half coef = il>1 ? 1.f/16.h : 1.h;
+ const half ml = d_all * sc * 32.h;
+ const half dl = d_all * sc * coef;
+ for (int i = 0; i < 16; ++i) {
+ const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
+ : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
+ reg[i/4][i%4] = dl * q - ml;
+ }
+}
+
+template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
+kernel void kernel_get_rows(
+ device const void * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint3 tptg [[threads_per_threadgroup]]) {
+ //const int64_t i = tgpig;
+ //const int64_t r = ((device int32_t *) src1)[i];
+
+ const int64_t i10 = tgpig.x;
+ const int64_t i11 = tgpig.y;
+
+ const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
+
+ const int64_t i02 = i11;
+
+ for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) {
+ float4x4 temp;
+ dequantize_func(
+ ((device const block_q *) ((device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp);
+ *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
+ }
+}
+
+kernel void kernel_get_rows_f32(
+ device const void * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint3 tptg [[threads_per_threadgroup]]) {
+ const int64_t i10 = tgpig.x;
+ const int64_t i11 = tgpig.y;
+
+ const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
+
+ const int64_t i02 = i11;
+
+ for (int ind = tiitg; ind < ne00; ind += tptg.x) {
+ ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
+ ((device float *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
+ }
+}
+
+kernel void kernel_get_rows_f16(
+ device const void * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint3 tptg [[threads_per_threadgroup]]) {
+ const int64_t i10 = tgpig.x;
+ const int64_t i11 = tgpig.y;
+
+ const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
+
+ const int64_t i02 = i11;
+
+ for (int ind = tiitg; ind < ne00; ind += tptg.x) {
+ ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
+ ((device half *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
+ }
+}
+
+#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
+#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
+#define BLOCK_SIZE_K 32
+#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
+#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
+#define THREAD_PER_BLOCK 128
+#define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
+#define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
+#define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
+#define SG_MAT_ROW 8
+
+// each block_q contains 16*nl weights
+template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
+void kernel_mul_mm_impl(device const uchar * src0,
+ device const uchar * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne02,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ threadgroup uchar * shared_memory [[threadgroup(0)]],
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ threadgroup half * sa = (threadgroup half *)(shared_memory);
+ threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
+
+ const uint r0 = tgpig.y;
+ const uint r1 = tgpig.x;
+ const uint im = tgpig.z;
+
+ // if this block is of 64x32 shape or smaller
+ short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
+ short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
+
+ // a thread shouldn't load data outside of the matrix
+ short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
+ short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
+
+ simdgroup_half8x8 ma[4];
+ simdgroup_float8x8 mb[2];
+ simdgroup_float8x8 c_res[8];
+ for (int i = 0; i < 8; i++){
+ c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
+ }
+
+ short il = (tiitg % THREAD_PER_ROW);
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
+ ushort offset1 = il/nl;
+
+ device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
+ device const float * y = (device const float *)(src1
+ + nb12 * im
+ + nb11 * (r1 * BLOCK_SIZE_N + thread_col)
+ + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
+
+ for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
+ // load data and store to threadgroup memory
+ half4x4 temp_a;
+ dequantize_func(x, il, temp_a);
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ #pragma unroll(16)
+ for (int i = 0; i < 16; i++) {
+ *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
+ + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
+ + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
+ }
+
+ *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
+
+ il = (il + 2 < nl) ? il + 2 : il % 2;
+ x = (il < 2) ? x + (2+nl-1)/nl : x;
+ y += BLOCK_SIZE_K;
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ // load matrices from threadgroup memory and conduct outer products
+ threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
+ threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
+
+ #pragma unroll(4)
+ for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
+ #pragma unroll(4)
+ for (int i = 0; i < 4; i++) {
+ simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
+ }
+ simdgroup_barrier(mem_flags::mem_none);
+ #pragma unroll(2)
+ for (int i = 0; i < 2; i++) {
+ simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
+ }
+
+ lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
+ lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
+
+ #pragma unroll(8)
+ for (int i = 0; i < 8; i++){
+ simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
+ }
+ }
+ }
+
+ if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
+ device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
+ + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
+ for (int i = 0; i < 8; i++) {
+ simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
+ }
+ } else {
+ // block is smaller than 64x32, we should avoid writing data outside of the matrix
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
+ + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
+ for (int i = 0; i < 8; i++) {
+ simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
+ if (sgitg == 0) {
+ for (int i = 0; i < n_rows; i++) {
+ for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
+ *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
+ }
+ }
+ }
+ }
+}
+
+// same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in src1ids
+template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
+void kernel_mul_mm_id_impl(
+ device const uchar * src0,
+ device const uchar * src1,
+ thread short * src1ids,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne02,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ int64_t ne1,
+ constant uint & r2,
+ constant uint & r3,
+ threadgroup uchar * shared_memory,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+
+ threadgroup half * sa = (threadgroup half *)(shared_memory);
+ threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
+
+ const uint r0 = tgpig.y;
+ const uint r1 = tgpig.x;
+ const uint im = tgpig.z;
+
+ if (r1 * BLOCK_SIZE_N >= ne1) return;
+
+ // if this block is of 64x32 shape or smaller
+ short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
+ short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
+
+ // a thread shouldn't load data outside of the matrix
+ short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
+ short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
+
+ simdgroup_half8x8 ma[4];
+ simdgroup_float8x8 mb[2];
+ simdgroup_float8x8 c_res[8];
+ for (int i = 0; i < 8; i++){
+ c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
+ }
+
+ short il = (tiitg % THREAD_PER_ROW);
+
+ const uint i12 = im%ne12;
+ const uint i13 = im/ne12;
+
+ uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
+ ushort offset1 = il/nl;
+
+ device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
+ device const float * y = (device const float *)(src1
+ + nb12 * im
+ + nb11 * src1ids[r1 * BLOCK_SIZE_N + thread_col]
+ + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
+
+ for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
+ // load data and store to threadgroup memory
+ half4x4 temp_a;
+ dequantize_func(x, il, temp_a);
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ for (int i = 0; i < 16; i++) {
+ *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
+ + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
+ + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
+ }
+
+ *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
+
+ il = (il + 2 < nl) ? il + 2 : il % 2;
+ x = (il < 2) ? x + (2+nl-1)/nl : x;
+ y += BLOCK_SIZE_K;
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ // load matrices from threadgroup memory and conduct outer products
+ threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
+ threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
+
+ for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
+ for (int i = 0; i < 4; i++) {
+ simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
+ }
+ simdgroup_barrier(mem_flags::mem_none);
+ for (int i = 0; i < 2; i++) {
+ simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
+ }
+
+ lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
+ lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
+
+ for (int i = 0; i < 8; i++){
+ simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
+ }
+ }
+ }
+
+ {
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
+ + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
+ for (int i = 0; i < 8; i++) {
+ simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
+ }
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ device float * C = dst + (BLOCK_SIZE_M * r0) + im*ne1*ne0;
+ if (sgitg == 0) {
+ for (int i = 0; i < n_rows; i++) {
+ for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
+ *(C + i + src1ids[j + r1*BLOCK_SIZE_N] * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
+ }
+ }
+ }
+ }
+}
+
+template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
+kernel void kernel_mul_mm(device const uchar * src0,
+ device const uchar * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne02,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ threadgroup uchar * shared_memory [[threadgroup(0)]],
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ kernel_mul_mm_impl<block_q, nl, dequantize_func>(
+ src0,
+ src1,
+ dst,
+ ne00,
+ ne02,
+ nb01,
+ nb02,
+ ne12,
+ nb10,
+ nb11,
+ nb12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ shared_memory,
+ tgpig,
+ tiitg,
+ sgitg);
+}
+
+template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
+kernel void kernel_mul_mm_id(
+ device const uchar * ids,
+ device const uchar * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne02,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const uchar * src00,
+ device const uchar * src01,
+ device const uchar * src02,
+ device const uchar * src03,
+ device const uchar * src04,
+ device const uchar * src05,
+ device const uchar * src06,
+ device const uchar * src07,
+ threadgroup uchar * shared_memory [[threadgroup(0)]],
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const uchar * src0s[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ // expert id
+ const int32_t id = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ // row indices of src1 for expert id
+ int64_t _ne1 = 0;
+ short src1ids[512];
+
+ for (int64_t i1 = 0; i1 < ne1; i1++) {
+ if (((device int32_t *) (ids + i1*nbi1))[idx] == id) {
+ src1ids[_ne1++] = i1;
+ }
+ }
+
+ kernel_mul_mm_id_impl<block_q, nl, dequantize_func>(
+ src0s[id],
+ src1,
+ src1ids,
+ dst,
+ ne00,
+ ne02,
+ nb01,
+ nb02,
+ ne12,
+ nb10,
+ nb11,
+ nb12,
+ ne0,
+ _ne1,
+ r2,
+ r3,
+ shared_memory,
+ tgpig,
+ tiitg,
+ sgitg);
+}
+
+#if QK_K == 256
+#define QK_NL 16
+#else
+#define QK_NL 4
+#endif
+
+//
+// get rows
+//
+
+typedef void (get_rows_t)(
+ device const void * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb1,
+ constant uint64_t & nb2,
+ uint3, uint, uint3);
+
+//template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows<float4x4, 1, dequantize_f32>;
+//template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
+template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
+template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
+template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows<block_q5_0, 2, dequantize_q5_0>;
+template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows<block_q5_1, 2, dequantize_q5_1>;
+template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
+template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
+template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
+template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows<block_q4_K, QK_NL, dequantize_q4_K>;
+template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>;
+template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
+
+//
+// matrix-matrix multiplication
+//
+
+typedef void (mat_mm_t)(
+ device const uchar * src0,
+ device const uchar * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne02,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint & r2,
+ constant uint & r3,
+ threadgroup uchar *,
+ uint3, uint, uint);
+
+template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<float4x4, 1, dequantize_f32>;
+template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
+template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
+template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
+template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
+template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
+template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
+template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
+template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
+template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
+template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
+template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
+
+//
+// indirect matrix-matrix multiplication
+//
+
+typedef void (mat_mm_id_t)(
+ device const uchar * ids,
+ device const uchar * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne02,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const uchar * src00,
+ device const uchar * src01,
+ device const uchar * src02,
+ device const uchar * src03,
+ device const uchar * src04,
+ device const uchar * src05,
+ device const uchar * src06,
+ device const uchar * src07,
+ threadgroup uchar *,
+ uint3, uint, uint);
+
+template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
+template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
+template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
+template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
+template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
+template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
+template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
+template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
+template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
+template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
+template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
+template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
+
+//
+// matrix-vector multiplication
+//
+
+[[host_name("kernel_mul_mv_id_f32_f32")]]
+kernel void kernel_mul_mv_id_f32_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ kernel_mul_mv_f32_f32_impl(
+ src0[id],
+ src1 + bid*nb11,
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ nb00,
+ nb01,
+ nb02,
+ ne10,
+ ne11,
+ ne12,
+ nb10,
+ nb11,
+ nb12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg);
+}
+
+[[host_name("kernel_mul_mv_id_f16_f32")]]
+kernel void kernel_mul_mv_id_f16_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ kernel_mul_mv_f16_f32_impl(
+ src0[id],
+ src1 + bid*nb11,
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ nb00,
+ nb01,
+ nb02,
+ ne10,
+ ne11,
+ ne12,
+ nb10,
+ nb11,
+ nb12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg);
+}
+
+[[host_name("kernel_mul_mv_id_q8_0_f32")]]
+kernel void kernel_mul_mv_id_q8_0_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ kernel_mul_mv_q8_0_f32_impl(
+ src0[id],
+ (device const float *) (src1 + bid*nb11),
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ ne10,
+ ne12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg,
+ sgitg);
+}
+
+[[host_name("kernel_mul_mv_id_q4_0_f32")]]
+kernel void kernel_mul_mv_id_q4_0_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
+ src0[id],
+ (device const float *) (src1 + bid*nb11),
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ ne10,
+ ne12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg,
+ sgitg);
+}
+
+[[host_name("kernel_mul_mv_id_q4_1_f32")]]
+kernel void kernel_mul_mv_id_q4_1_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
+ src0[id],
+ (device const float *) (src1 + bid*nb11),
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ ne10,
+ ne12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg,
+ sgitg);
+}
+
+[[host_name("kernel_mul_mv_id_q5_0_f32")]]
+kernel void kernel_mul_mv_id_q5_0_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
+ src0[id],
+ (device const float *) (src1 + bid*nb11),
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ ne10,
+ ne12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg,
+ sgitg);
+}
+
+[[host_name("kernel_mul_mv_id_q5_1_f32")]]
+kernel void kernel_mul_mv_id_q5_1_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
+ src0[id],
+ (device const float *) (src1 + bid*nb11),
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ ne10,
+ ne12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg,
+ sgitg);
+}
+
+[[host_name("kernel_mul_mv_id_q2_K_f32")]]
+kernel void kernel_mul_mv_id_q2_K_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ kernel_mul_mv_q2_K_f32_impl(
+ src0[id],
+ (device const float *) (src1 + bid*nb11),
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ ne10,
+ ne12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg,
+ sgitg);
+}
+
+[[host_name("kernel_mul_mv_id_q3_K_f32")]]
+kernel void kernel_mul_mv_id_q3_K_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ kernel_mul_mv_q3_K_f32_impl(
+ src0[id],
+ (device const float *) (src1 + bid*nb11),
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ ne10,
+ ne12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg,
+ sgitg);
+}
+
+[[host_name("kernel_mul_mv_id_q4_K_f32")]]
+kernel void kernel_mul_mv_id_q4_K_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ kernel_mul_mv_q4_K_f32_impl(
+ src0[id],
+ (device const float *) (src1 + bid*nb11),
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ ne10,
+ ne12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg,
+ sgitg);
+}
+
+[[host_name("kernel_mul_mv_id_q5_K_f32")]]
+kernel void kernel_mul_mv_id_q5_K_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ kernel_mul_mv_q5_K_f32_impl(
+ src0[id],
+ (device const float *) (src1 + bid*nb11),
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ ne10,
+ ne12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg,
+ sgitg);
+}
+
+[[host_name("kernel_mul_mv_id_q6_K_f32")]]
+kernel void kernel_mul_mv_id_q6_K_f32(
+ device const char * ids,
+ device const char * src1,
+ device float * dst,
+ constant uint64_t & nbi1,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant int64_t & ne13,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ constant uint64_t & nb1,
+ constant uint & r2,
+ constant uint & r3,
+ constant int & idx,
+ device const char * src00,
+ device const char * src01,
+ device const char * src02,
+ device const char * src03,
+ device const char * src04,
+ device const char * src05,
+ device const char * src06,
+ device const char * src07,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiitg[[thread_index_in_threadgroup]],
+ uint tiisg[[thread_index_in_simdgroup]],
+ uint sgitg[[simdgroup_index_in_threadgroup]]) {
+ device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
+
+ const int64_t bid = tgpig.z/(ne12*ne13);
+
+ tgpig.z = tgpig.z%(ne12*ne13);
+
+ const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
+
+ kernel_mul_mv_q6_K_f32_impl(
+ src0[id],
+ (device const float *) (src1 + bid*nb11),
+ dst + bid*ne0,
+ ne00,
+ ne01,
+ ne02,
+ ne10,
+ ne12,
+ ne0,
+ ne1,
+ r2,
+ r3,
+ tgpig,
+ tiisg,
+ sgitg);
+}
diff --git a/candle-metal-kernels/src/tests.rs b/candle-metal-kernels/src/tests.rs
index 2831a386..655161e5 100644
--- a/candle-metal-kernels/src/tests.rs
+++ b/candle-metal-kernels/src/tests.rs
@@ -37,8 +37,7 @@ fn approx_bf16(v: Vec<bf16>, digits: i32) -> Vec<f32> {
fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
let device = device();
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
@@ -60,8 +59,7 @@ fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> Vec<T> {
let device = device();
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
@@ -96,8 +94,7 @@ fn run_strided<T: Clone>(
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
let output = new_buffer(&device, v);
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
call_unary_strided(
&device,
command_buffer,
@@ -278,8 +275,7 @@ fn binary_ops_bf16() {
fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
let device = device();
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
@@ -409,8 +405,7 @@ fn it_cast_f16_bf16() {
fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
let device = device();
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
@@ -445,8 +440,7 @@ fn run_affine_strided<T: Clone>(
add: f64,
) -> Vec<T> {
let device = device();
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
@@ -595,8 +589,7 @@ fn run_index_select<T: Clone, I: Clone + std::fmt::Debug>(
let dst_el = ids.len() * left_size * right_size;
let dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]);
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
call_index_select(
&device,
&command_buffer,
@@ -631,8 +624,7 @@ fn cos_f16() {
fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T> {
let device = device();
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
@@ -662,8 +654,7 @@ fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T
fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'static str) -> Vec<T> {
let device = device();
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
@@ -781,8 +772,7 @@ fn run_where_cond<I: Clone, T: Clone>(
name: &'static str,
) -> Vec<T> {
let device = device();
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
@@ -858,8 +848,7 @@ fn run_gemm<T: Clone>(
rhs_offset: usize,
) -> Vec<T> {
let device = device();
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
@@ -940,8 +929,7 @@ fn gemm() {
fn run_random<T: Clone>(name: &'static str, seed: u32, length: usize, a: f32, b: f32) -> Vec<T> {
let device = device();
- let fence = device.new_fence();
- let kernels = Kernels::new(fence);
+ let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
diff --git a/candle-metal-kernels/src/unary.metal b/candle-metal-kernels/src/unary.metal
index dcf803d8..7add58fd 100644
--- a/candle-metal-kernels/src/unary.metal
+++ b/candle-metal-kernels/src/unary.metal
@@ -117,7 +117,6 @@ UNARY_OP(erf)
UNARY_OP(tanh)
UNARY_OP(recip)
UNARY_OP(relu)
-
UNARY(id, float, copy_f32, copy_f32_strided)
UNARY(id, half, copy_f16, copy_f16_strided)
UNARY(id, uint8_t, copy_u8, copy_u8_strided)
@@ -136,6 +135,7 @@ BFLOAT_UNARY_OP(neg)
BFLOAT_UNARY_OP(exp)
BFLOAT_UNARY_OP(log)
BFLOAT_UNARY_OP(gelu)
+BFLOAT_UNARY_OP(abs)
BFLOAT_UNARY_OP(ceil)
BFLOAT_UNARY_OP(floor)
BFLOAT_UNARY_OP(round)