summaryrefslogtreecommitdiff
path: root/candle-nn/examples/basic_optimizer.rs
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-08-18 09:38:22 +0100
committerGitHub <noreply@github.com>2023-08-18 09:38:22 +0100
commitc78ce765016392673805ed8dfafb4ae1a7b6c26f (patch)
treedf7bab84b80da4754aef94f0dd73503c33bc6e44 /candle-nn/examples/basic_optimizer.rs
parent13401df4d141bf568a2c2056411d62060707e79b (diff)
downloadcandle-c78ce765016392673805ed8dfafb4ae1a7b6c26f.tar.gz
candle-c78ce765016392673805ed8dfafb4ae1a7b6c26f.tar.bz2
candle-c78ce765016392673805ed8dfafb4ae1a7b6c26f.zip
Add a simple Module trait and implement it for the various nn layers (#500)
* Start adding the module trait. * Use the module trait. * Implement module for qmatmul.
Diffstat (limited to 'candle-nn/examples/basic_optimizer.rs')
-rw-r--r--candle-nn/examples/basic_optimizer.rs2
1 files changed, 1 insertions, 1 deletions
diff --git a/candle-nn/examples/basic_optimizer.rs b/candle-nn/examples/basic_optimizer.rs
index 3c5665e8..cd5824dd 100644
--- a/candle-nn/examples/basic_optimizer.rs
+++ b/candle-nn/examples/basic_optimizer.rs
@@ -1,5 +1,5 @@
use candle::{DType, Device, Result, Tensor};
-use candle_nn::{linear, AdamW, Linear, ParamsAdamW, VarBuilder, VarMap};
+use candle_nn::{linear, AdamW, Linear, Module, ParamsAdamW, VarBuilder, VarMap};
fn gen_data() -> Result<(Tensor, Tensor)> {
// Generate some sample linear data.