summaryrefslogtreecommitdiff
path: root/candle-nn/examples/cpu_benchmarks.rs
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-09-05 15:20:23 +0200
committerGitHub <noreply@github.com>2023-09-05 14:20:23 +0100
commit1c9e5394a5056aadc948f9330ea31fea4972e65e (patch)
treeafabffd5e6663ee1b6231020981ab50273154ba6 /candle-nn/examples/cpu_benchmarks.rs
parenta8410bf35ea3ad8eb973f48d301e65309d232377 (diff)
downloadcandle-1c9e5394a5056aadc948f9330ea31fea4972e65e.tar.gz
candle-1c9e5394a5056aadc948f9330ea31fea4972e65e.tar.bz2
candle-1c9e5394a5056aadc948f9330ea31fea4972e65e.zip
Add a custom softmax implementation. (#744)
* Add a custom softmax implementation. * Add softmaxlastdim to the benchmarks. * And add a test. * Support more dtypes. * Polish the code. * Use the slow implementation on cuda. * Add a todo for the cuda kernel.
Diffstat (limited to 'candle-nn/examples/cpu_benchmarks.rs')
-rw-r--r--candle-nn/examples/cpu_benchmarks.rs176
1 files changed, 176 insertions, 0 deletions
diff --git a/candle-nn/examples/cpu_benchmarks.rs b/candle-nn/examples/cpu_benchmarks.rs
new file mode 100644
index 00000000..20c92dbb
--- /dev/null
+++ b/candle-nn/examples/cpu_benchmarks.rs
@@ -0,0 +1,176 @@
+/// This example contains some simple benchmarks so that it's easy to run them in perf etc.
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use candle::quantized::GgmlType;
+use candle::{Device, Result, Tensor, D};
+use clap::{Parser, Subcommand};
+
+trait Benchmark {
+ type PreProcessData;
+ type RunResult;
+
+ fn preprocess() -> Result<Self::PreProcessData>;
+ fn run_one(_: &Self::PreProcessData) -> Result<Self::RunResult>;
+
+ const ITERS: usize;
+}
+
+// Conv1d example as used in whisper.
+struct Conv1d;
+impl Benchmark for Conv1d {
+ type PreProcessData = (Tensor, Tensor);
+ type RunResult = Tensor;
+ fn preprocess() -> Result<Self::PreProcessData> {
+ let inp = Tensor::randn(0f32, 1., (1, 384, 3000), &Device::Cpu)?;
+ let w = Tensor::randn(0f32, 1., (384, 384, 3), &Device::Cpu)?;
+ Ok((inp, w))
+ }
+
+ fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
+ d.0.conv1d(&d.1, 0, 1, 1, 1)
+ }
+
+ const ITERS: usize = 5;
+}
+
+// Conv2d example as used in stable-diffusion.
+struct Conv2d;
+impl Benchmark for Conv2d {
+ type PreProcessData = (Tensor, Tensor);
+ type RunResult = Tensor;
+
+ fn preprocess() -> Result<Self::PreProcessData> {
+ let inp = Tensor::randn(0f32, 1., (2, 320, 96, 96), &Device::Cpu)?;
+ let w = Tensor::randn(0f32, 1., (320, 320, 3, 3), &Device::Cpu)?;
+ Ok((inp, w))
+ }
+
+ fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
+ d.0.conv2d(&d.1, 0, 1, 1, 1)
+ }
+
+ const ITERS: usize = 1;
+}
+
+struct Matmul;
+impl Benchmark for Matmul {
+ type PreProcessData = (Tensor, Tensor);
+ type RunResult = Tensor;
+ fn preprocess() -> Result<Self::PreProcessData> {
+ let lhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
+ let rhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
+ Ok((lhs, rhs))
+ }
+
+ fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
+ d.0.matmul(&d.1)
+ }
+
+ const ITERS: usize = 100;
+}
+
+// This benchmark is similar to:
+// https://github.com/ggerganov/llama.cpp/blob/master/examples/benchmark/benchmark-matmult.cpp
+struct QMatMul;
+impl Benchmark for QMatMul {
+ type PreProcessData = (candle::quantized::QMatMul, Tensor);
+ type RunResult = Tensor;
+ fn preprocess() -> Result<Self::PreProcessData> {
+ let zeros = vec![candle::quantized::k_quants::BlockQ4_0::zeros(); 4096 * 11008 / 32];
+ let mm = candle::quantized::QTensor::new(zeros, (4096, 11008))?;
+ let mm = candle::quantized::QMatMul::from_qtensor(mm);
+ let arg = Tensor::randn(0f32, 1., (128, 11008), &Device::Cpu)?;
+ Ok((mm, arg))
+ }
+
+ fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
+ d.0.forward(&d.1)
+ }
+
+ const ITERS: usize = 100;
+}
+
+struct Softmax;
+impl Benchmark for Softmax {
+ type PreProcessData = Tensor;
+ type RunResult = Tensor;
+ fn preprocess() -> Result<Self::PreProcessData> {
+ // Typical whisper tiny size.
+ let x = Tensor::randn(0f32, 1., (1, 6, 200, 1500), &Device::Cpu)?;
+ Ok(x)
+ }
+
+ fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
+ candle_nn::ops::softmax(d, D::Minus1)
+ }
+
+ const ITERS: usize = 100;
+}
+
+struct SoftmaxLastDim;
+impl Benchmark for SoftmaxLastDim {
+ type PreProcessData = Tensor;
+ type RunResult = Tensor;
+ fn preprocess() -> Result<Self::PreProcessData> {
+ // Typical whisper tiny size.
+ let x = Tensor::randn(0f32, 1., (1, 6, 200, 1500), &Device::Cpu)?;
+ Ok(x)
+ }
+
+ fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> {
+ candle_nn::ops::softmax_last_dim(d)
+ }
+
+ const ITERS: usize = 100;
+}
+
+fn run<B: Benchmark>(iters: Option<usize>) -> Result<()> {
+ use std::hint::black_box;
+
+ let iters = iters.unwrap_or(B::ITERS);
+ let d = B::preprocess()?;
+ let start = std::time::Instant::now();
+ for _iter in 0..iters {
+ let _res = black_box(B::run_one(black_box(&d))?);
+ }
+ println!("{:?}", start.elapsed() / iters as u32);
+ Ok(())
+}
+
+#[derive(Subcommand, Debug, Clone)]
+enum Task {
+ Conv1d,
+ Conv2d,
+ Matmul,
+ Qmatmul,
+ Softmax,
+ SoftmaxLastDim,
+}
+
+#[derive(Parser, Debug)]
+#[command(author, version, about, long_about = None)]
+pub struct Args {
+ /// The benchmark to be run.
+ #[command(subcommand)]
+ task: Task,
+
+ #[arg(long)]
+ iters: Option<usize>,
+}
+
+fn main() -> Result<()> {
+ let args = Args::parse();
+ match args.task {
+ Task::Conv1d => run::<Conv1d>(args.iters)?,
+ Task::Conv2d => run::<Conv2d>(args.iters)?,
+ Task::Matmul => run::<Matmul>(args.iters)?,
+ Task::Softmax => run::<Softmax>(args.iters)?,
+ Task::SoftmaxLastDim => run::<SoftmaxLastDim>(args.iters)?,
+ Task::Qmatmul => run::<QMatMul>(args.iters)?,
+ }
+ Ok(())
+}