diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-09-05 15:20:23 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-09-05 14:20:23 +0100 |
commit | 1c9e5394a5056aadc948f9330ea31fea4972e65e (patch) | |
tree | afabffd5e6663ee1b6231020981ab50273154ba6 /candle-nn/examples/cpu_benchmarks.rs | |
parent | a8410bf35ea3ad8eb973f48d301e65309d232377 (diff) | |
download | candle-1c9e5394a5056aadc948f9330ea31fea4972e65e.tar.gz candle-1c9e5394a5056aadc948f9330ea31fea4972e65e.tar.bz2 candle-1c9e5394a5056aadc948f9330ea31fea4972e65e.zip |
Add a custom softmax implementation. (#744)
* Add a custom softmax implementation.
* Add softmaxlastdim to the benchmarks.
* And add a test.
* Support more dtypes.
* Polish the code.
* Use the slow implementation on cuda.
* Add a todo for the cuda kernel.
Diffstat (limited to 'candle-nn/examples/cpu_benchmarks.rs')
-rw-r--r-- | candle-nn/examples/cpu_benchmarks.rs | 176 |
1 files changed, 176 insertions, 0 deletions
diff --git a/candle-nn/examples/cpu_benchmarks.rs b/candle-nn/examples/cpu_benchmarks.rs new file mode 100644 index 00000000..20c92dbb --- /dev/null +++ b/candle-nn/examples/cpu_benchmarks.rs @@ -0,0 +1,176 @@ +/// This example contains some simple benchmarks so that it's easy to run them in perf etc. +#[cfg(feature = "mkl")] +extern crate intel_mkl_src; + +#[cfg(feature = "accelerate")] +extern crate accelerate_src; + +use candle::quantized::GgmlType; +use candle::{Device, Result, Tensor, D}; +use clap::{Parser, Subcommand}; + +trait Benchmark { + type PreProcessData; + type RunResult; + + fn preprocess() -> Result<Self::PreProcessData>; + fn run_one(_: &Self::PreProcessData) -> Result<Self::RunResult>; + + const ITERS: usize; +} + +// Conv1d example as used in whisper. +struct Conv1d; +impl Benchmark for Conv1d { + type PreProcessData = (Tensor, Tensor); + type RunResult = Tensor; + fn preprocess() -> Result<Self::PreProcessData> { + let inp = Tensor::randn(0f32, 1., (1, 384, 3000), &Device::Cpu)?; + let w = Tensor::randn(0f32, 1., (384, 384, 3), &Device::Cpu)?; + Ok((inp, w)) + } + + fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> { + d.0.conv1d(&d.1, 0, 1, 1, 1) + } + + const ITERS: usize = 5; +} + +// Conv2d example as used in stable-diffusion. +struct Conv2d; +impl Benchmark for Conv2d { + type PreProcessData = (Tensor, Tensor); + type RunResult = Tensor; + + fn preprocess() -> Result<Self::PreProcessData> { + let inp = Tensor::randn(0f32, 1., (2, 320, 96, 96), &Device::Cpu)?; + let w = Tensor::randn(0f32, 1., (320, 320, 3, 3), &Device::Cpu)?; + Ok((inp, w)) + } + + fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> { + d.0.conv2d(&d.1, 0, 1, 1, 1) + } + + const ITERS: usize = 1; +} + +struct Matmul; +impl Benchmark for Matmul { + type PreProcessData = (Tensor, Tensor); + type RunResult = Tensor; + fn preprocess() -> Result<Self::PreProcessData> { + let lhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?; + let rhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?; + Ok((lhs, rhs)) + } + + fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> { + d.0.matmul(&d.1) + } + + const ITERS: usize = 100; +} + +// This benchmark is similar to: +// https://github.com/ggerganov/llama.cpp/blob/master/examples/benchmark/benchmark-matmult.cpp +struct QMatMul; +impl Benchmark for QMatMul { + type PreProcessData = (candle::quantized::QMatMul, Tensor); + type RunResult = Tensor; + fn preprocess() -> Result<Self::PreProcessData> { + let zeros = vec![candle::quantized::k_quants::BlockQ4_0::zeros(); 4096 * 11008 / 32]; + let mm = candle::quantized::QTensor::new(zeros, (4096, 11008))?; + let mm = candle::quantized::QMatMul::from_qtensor(mm); + let arg = Tensor::randn(0f32, 1., (128, 11008), &Device::Cpu)?; + Ok((mm, arg)) + } + + fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> { + d.0.forward(&d.1) + } + + const ITERS: usize = 100; +} + +struct Softmax; +impl Benchmark for Softmax { + type PreProcessData = Tensor; + type RunResult = Tensor; + fn preprocess() -> Result<Self::PreProcessData> { + // Typical whisper tiny size. + let x = Tensor::randn(0f32, 1., (1, 6, 200, 1500), &Device::Cpu)?; + Ok(x) + } + + fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> { + candle_nn::ops::softmax(d, D::Minus1) + } + + const ITERS: usize = 100; +} + +struct SoftmaxLastDim; +impl Benchmark for SoftmaxLastDim { + type PreProcessData = Tensor; + type RunResult = Tensor; + fn preprocess() -> Result<Self::PreProcessData> { + // Typical whisper tiny size. + let x = Tensor::randn(0f32, 1., (1, 6, 200, 1500), &Device::Cpu)?; + Ok(x) + } + + fn run_one(d: &Self::PreProcessData) -> Result<Self::RunResult> { + candle_nn::ops::softmax_last_dim(d) + } + + const ITERS: usize = 100; +} + +fn run<B: Benchmark>(iters: Option<usize>) -> Result<()> { + use std::hint::black_box; + + let iters = iters.unwrap_or(B::ITERS); + let d = B::preprocess()?; + let start = std::time::Instant::now(); + for _iter in 0..iters { + let _res = black_box(B::run_one(black_box(&d))?); + } + println!("{:?}", start.elapsed() / iters as u32); + Ok(()) +} + +#[derive(Subcommand, Debug, Clone)] +enum Task { + Conv1d, + Conv2d, + Matmul, + Qmatmul, + Softmax, + SoftmaxLastDim, +} + +#[derive(Parser, Debug)] +#[command(author, version, about, long_about = None)] +pub struct Args { + /// The benchmark to be run. + #[command(subcommand)] + task: Task, + + #[arg(long)] + iters: Option<usize>, +} + +fn main() -> Result<()> { + let args = Args::parse(); + match args.task { + Task::Conv1d => run::<Conv1d>(args.iters)?, + Task::Conv2d => run::<Conv2d>(args.iters)?, + Task::Matmul => run::<Matmul>(args.iters)?, + Task::Softmax => run::<Softmax>(args.iters)?, + Task::SoftmaxLastDim => run::<SoftmaxLastDim>(args.iters)?, + Task::Qmatmul => run::<QMatMul>(args.iters)?, + } + Ok(()) +} |