diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-08-06 18:49:43 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-08-06 17:49:43 +0100 |
commit | d34039e35267b3f4de83770f8da4ea31491bcec5 (patch) | |
tree | 6efc4796859a04223d2211303cc12b3a97321fcc /candle-nn/src/conv.rs | |
parent | 93cfe5642f473889d1df62ccb8f1740f77523dd3 (diff) | |
download | candle-d34039e35267b3f4de83770f8da4ea31491bcec5.tar.gz candle-d34039e35267b3f4de83770f8da4ea31491bcec5.tar.bz2 candle-d34039e35267b3f4de83770f8da4ea31491bcec5.zip |
Add a stable diffusion example (#328)
* Start adding a stable-diffusion example.
* Proper computation of the causal mask.
* Add the chunk operation.
* Work in progress: port the attention module.
* Add some dummy modules for conv2d and group-norm, get the attention module to compile.
* Re-enable the 2d convolution.
* Add the embeddings module.
* Add the resnet module.
* Add the unet blocks.
* Add the unet.
* And add the variational auto-encoder.
* Use the pad function from utils.
Diffstat (limited to 'candle-nn/src/conv.rs')
-rw-r--r-- | candle-nn/src/conv.rs | 81 |
1 files changed, 81 insertions, 0 deletions
diff --git a/candle-nn/src/conv.rs b/candle-nn/src/conv.rs index 8fbe7659..6e1fcf51 100644 --- a/candle-nn/src/conv.rs +++ b/candle-nn/src/conv.rs @@ -48,3 +48,84 @@ impl Conv1d { } } } + +#[derive(Debug, Clone, Copy, PartialEq, Eq)] +pub struct Conv2dConfig { + pub padding: usize, + pub stride: usize, +} + +impl Default for Conv2dConfig { + fn default() -> Self { + Self { + padding: 0, + stride: 1, + } + } +} + +#[allow(dead_code)] +#[derive(Debug)] +pub struct Conv2d { + weight: Tensor, + bias: Option<Tensor>, + config: Conv2dConfig, +} + +impl Conv2d { + pub fn new(weight: Tensor, bias: Option<Tensor>, config: Conv2dConfig) -> Self { + Self { + weight, + bias, + config, + } + } + + pub fn config(&self) -> &Conv2dConfig { + &self.config + } + + pub fn forward(&self, _x: &Tensor) -> Result<Tensor> { + todo!() + } +} + +pub fn conv1d( + in_channels: usize, + out_channels: usize, + kernel_size: usize, + cfg: Conv1dConfig, + vs: crate::VarBuilder, +) -> Result<Conv1d> { + let init_ws = crate::init::DEFAULT_KAIMING_NORMAL; + let ws = vs.get_or_init((out_channels, in_channels, kernel_size), "weight", init_ws)?; + let bound = 1. / (in_channels as f64).sqrt(); + let init_bs = crate::Init::Uniform { + lo: -bound, + up: bound, + }; + let bs = vs.get_or_init(out_channels, "bias", init_bs)?; + Ok(Conv1d::new(ws, Some(bs), cfg)) +} + +pub fn conv2d( + in_channels: usize, + out_channels: usize, + kernel_size: usize, + cfg: Conv2dConfig, + vs: crate::VarBuilder, +) -> Result<Conv2d> { + let init_ws = crate::init::DEFAULT_KAIMING_NORMAL; + let ws = vs.get_or_init( + (out_channels, in_channels, kernel_size, kernel_size), + "weight", + init_ws, + )?; + let bound = 1. / (in_channels as f64).sqrt(); + let init_bs = crate::Init::Uniform { + lo: -bound, + up: bound, + }; + let bs = vs.get_or_init(out_channels, "bias", init_bs)?; + Ok(Conv2d::new(ws, Some(bs), cfg)) +} |