diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2024-03-24 22:48:52 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-24 22:48:52 +0100 |
commit | 1b98f84a2baa23192b97e36131011da658bfa1c2 (patch) | |
tree | 92c4e9e8a263edfc8d3fedeab2cc02271d87d51e /candle-nn/src/rotary_emb.rs | |
parent | cf7d7fcf2f20c24aae633483c3a107c1219a7f9a (diff) | |
download | candle-1b98f84a2baa23192b97e36131011da658bfa1c2.tar.gz candle-1b98f84a2baa23192b97e36131011da658bfa1c2.tar.bz2 candle-1b98f84a2baa23192b97e36131011da658bfa1c2.zip |
Fast kernels for rotary embeddings. (#1928)
* Fast kernels for rotary embeddings.
* Add a test for the fast CPU kernel.
* Rope cuda bindings.
* Cuda kernel.
* Metal kernel (part 1).
* Cuda kernels.
* Finish the metal kernel.
* Use the new kernels in the quantized example.
* Fix warning.
Diffstat (limited to 'candle-nn/src/rotary_emb.rs')
-rw-r--r-- | candle-nn/src/rotary_emb.rs | 247 |
1 files changed, 247 insertions, 0 deletions
diff --git a/candle-nn/src/rotary_emb.rs b/candle-nn/src/rotary_emb.rs new file mode 100644 index 00000000..20545b8d --- /dev/null +++ b/candle-nn/src/rotary_emb.rs @@ -0,0 +1,247 @@ +use candle::{CpuStorage, Layout, Result, Shape, Tensor, D}; +use rayon::prelude::*; + +/// Interleaved variant of rotary embeddings. +/// The x0 and x1 value are interleaved on the n_embd (= head_dim) dimension. +/// The resulting y0 and y1 are also interleaved with: +/// y0 = x0*cos - x1*sin +/// y1 = x0*sin + x1*cos +#[derive(Debug, Clone)] +struct RotaryEmbI; + +impl candle::CustomOp3 for RotaryEmbI { + fn name(&self) -> &'static str { + "rotary-emb-int" + } + + fn cpu_fwd( + &self, + s1: &CpuStorage, + l1: &Layout, + s2: &CpuStorage, + l2: &Layout, + s3: &CpuStorage, + l3: &Layout, + ) -> Result<(CpuStorage, Shape)> { + fn inner<T: candle::WithDType + num_traits::Float>( + src: &[T], + l_src: &Layout, + cos: &[T], + l_cos: &Layout, + sin: &[T], + l_sin: &Layout, + ) -> Result<(CpuStorage, Shape)> { + let src = match l_src.contiguous_offsets() { + None => candle::bail!("input src has to be contiguous"), + Some((o1, o2)) => &src[o1..o2], + }; + let cos = match l_cos.contiguous_offsets() { + None => candle::bail!("input cos has to be contiguous"), + Some((o1, o2)) => &cos[o1..o2], + }; + let sin = match l_sin.contiguous_offsets() { + None => candle::bail!("input sin has to be contiguous"), + Some((o1, o2)) => &sin[o1..o2], + }; + let (b, h, t, d) = l_src.shape().dims4()?; + let el_count = b * h * t * d; + let mut dst = vec![T::zero(); el_count]; + src.par_chunks(t * d) + .zip(dst.par_chunks_mut(t * d)) + .for_each(|(src, dst)| { + for i_over_2 in 0..t * d / 2 { + let i = 2 * i_over_2; + dst[i] = src[i] * cos[i_over_2] - src[i + 1] * sin[i_over_2]; + dst[i + 1] = src[i] * sin[i_over_2] + src[i + 1] * cos[i_over_2]; + } + }); + let storage = candle::WithDType::to_cpu_storage_owned(dst); + Ok((storage, (b, h, t, d).into())) + } + + use candle::backend::BackendStorage; + use CpuStorage::{BF16, F16, F32, F64}; + match (s1, s2, s3) { + (BF16(s1), BF16(s2), BF16(s3)) => inner(s1, l1, s2, l2, s3, l3), + (F16(s1), F16(s2), F16(s3)) => inner(s1, l1, s2, l2, s3, l3), + (F32(s1), F32(s2), F32(s3)) => inner(s1, l1, s2, l2, s3, l3), + (F64(s1), F64(s2), F64(s3)) => inner(s1, l1, s2, l2, s3, l3), + _ => candle::bail!( + "unsupported dtype for rope {:?} {:?} {:?}", + s1.dtype(), + s2.dtype(), + s3.dtype() + ), + } + } + + #[cfg(feature = "cuda")] + fn cuda_fwd( + &self, + s1: &candle::CudaStorage, + l1: &Layout, + s2: &candle::CudaStorage, + l2: &Layout, + s3: &candle::CudaStorage, + l3: &Layout, + ) -> Result<(candle::CudaStorage, Shape)> { + use candle::cuda_backend::cudarc::driver::{ + CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig, + }; + use candle::cuda_backend::{kernel_name, kernels, WrapErr}; + use candle::{CudaDevice, WithDType}; + + fn inner<T: DeviceRepr + WithDType>( + src: &CudaSlice<T>, + l_src: &Layout, + cos: &CudaSlice<T>, + l_cos: &Layout, + sin: &CudaSlice<T>, + l_sin: &Layout, + dev: &CudaDevice, + ) -> Result<CudaSlice<T>> { + let src = match l_src.contiguous_offsets() { + None => candle::bail!("src input has to be contiguous"), + Some((o1, o2)) => src.slice(o1..o2), + }; + let cos = match l_cos.contiguous_offsets() { + None => candle::bail!("cos input has to be contiguous"), + Some((o1, o2)) => cos.slice(o1..o2), + }; + let sin = match l_sin.contiguous_offsets() { + None => candle::bail!("sin input has to be contiguous"), + Some((o1, o2)) => sin.slice(o1..o2), + }; + let (b, h, t, d) = l_src.shape().dims4()?; + let el = b * h * t * d; + let cfg = LaunchConfig::for_num_elems((el / 2) as u32); + let func = dev.get_or_load_func(&kernel_name::<T>("rope_i"), kernels::REDUCE)?; + // SAFETY: Set later by running the kernel. + let dst = unsafe { dev.alloc::<T>(el) }.w()?; + let params = (&src, &cos, &sin, &dst, (b * h) as u32, (t * d) as u32); + // SAFETY: ffi. + unsafe { func.launch(cfg, params) }.w()?; + Ok(dst) + } + + use candle::backend::BackendStorage; + use candle::cuda_backend::CudaStorageSlice::{BF16, F16, F32, F64}; + let dev = s1.device(); + let slice = match (&s1.slice, &s2.slice, &s3.slice) { + (BF16(s1), BF16(s2), BF16(s3)) => BF16(inner(s1, l1, s2, l2, s3, l3, dev)?), + (F16(s1), F16(s2), F16(s3)) => F16(inner(s1, l1, s2, l2, s3, l3, dev)?), + (F32(s1), F32(s2), F32(s3)) => F32(inner(s1, l1, s2, l2, s3, l3, dev)?), + (F64(s1), F64(s2), F64(s3)) => F64(inner(s1, l1, s2, l2, s3, l3, dev)?), + _ => candle::bail!( + "unsupported dtype for rope {:?} {:?} {:?}", + s1.dtype(), + s2.dtype(), + s3.dtype() + ), + }; + let dst = candle::cuda_backend::CudaStorage { + slice, + device: dev.clone(), + }; + Ok((dst, l1.shape().clone())) + } + + #[cfg(feature = "metal")] + fn metal_fwd( + &self, + src: &candle::MetalStorage, + l_src: &Layout, + cos: &candle::MetalStorage, + l_cos: &Layout, + sin: &candle::MetalStorage, + l_sin: &Layout, + ) -> Result<(candle::MetalStorage, Shape)> { + use candle::backend::BackendStorage; + let device = src.device(); + let command_buffer = device.command_buffer()?; + let kernels = device.kernels(); + if cos.dtype() != src.dtype() || sin.dtype() != src.dtype() { + candle::bail!( + "dtype mismatch in rope-i {:?} {:?} {:?}", + src.dtype(), + cos.dtype(), + sin.dtype() + ) + } + let name = match src.dtype() { + candle::DType::F32 => "rope_i_f32", + candle::DType::F16 => "rope_i_f16", + candle::DType::BF16 => "rope_i_bf16", + dtype => candle::bail!("rope-i is not implemented for {dtype:?}"), + }; + let (b, h, t, d) = l_src.shape().dims4()?; + let el = b * h * t * d; + let output = device.new_buffer(el, src.dtype(), "rope-i")?; + candle_metal_kernels::call_rope_i( + device.metal_device(), + &command_buffer, + kernels, + name, + b * h, + t * d, + src.buffer(), + l_src.start_offset() * src.dtype().size_in_bytes(), + cos.buffer(), + l_cos.start_offset() * cos.dtype().size_in_bytes(), + sin.buffer(), + l_sin.start_offset() * sin.dtype().size_in_bytes(), + &output, + ) + .map_err(candle::Error::wrap)?; + let out = candle::MetalStorage::new(output, device.clone(), el, src.dtype()); + Ok((out, l_src.shape().clone())) + } +} + +pub fn rope_i(xs: &Tensor, cos: &Tensor, sin: &Tensor) -> Result<Tensor> { + let (_b_sz, _n_head, seq_len, n_embd) = xs.dims4()?; + let (cos_seq_len, cos_n_embd) = cos.dims2()?; + let (sin_seq_len, sin_n_embd) = cos.dims2()?; + if cos_n_embd * 2 != n_embd + || sin_n_embd * 2 != n_embd + || seq_len > cos_seq_len + || seq_len > sin_seq_len + { + candle::bail!( + "inconsistent last dim size in rope {:?} {:?} {:?}", + xs.shape(), + cos.shape(), + sin.shape() + ) + } + if !xs.is_contiguous() { + candle::bail!("xs has to be contiguous in rope") + } + if !cos.is_contiguous() { + candle::bail!("cos has to be contiguous in rope") + } + if !sin.is_contiguous() { + candle::bail!("sin has to be contiguous in rope") + } + xs.apply_op3_no_bwd(cos, sin, &RotaryEmbI) +} + +pub fn rope_i_slow(x: &Tensor, cos: &Tensor, sin: &Tensor) -> Result<Tensor> { + let (b_sz, n_head, seq_len, n_embd) = x.dims4()?; + let cos = cos + .narrow(0, 0, seq_len)? + .reshape((seq_len, n_embd / 2, 1))?; + let sin = sin + .narrow(0, 0, seq_len)? + .reshape((seq_len, n_embd / 2, 1))?; + let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?; + let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?; + let x = x.reshape((b_sz, n_head, seq_len, n_embd / 2, 2))?; + let x0 = x.narrow(D::Minus1, 0, 1)?; + let x1 = x.narrow(D::Minus1, 1, 1)?; + let y0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?; + let y1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?; + let rope = Tensor::cat(&[y0, y1], D::Minus1)?; + let rope = rope.flatten_from(D::Minus2)?; + Ok(rope) +} |